Open
Close

Открыт новый тип высокотемпературных сверхпроводников. Применения высокотемпературных сверхпроводников в энергетике Высокотемпературные сверхпроводники обзор

Высокотемпературная сверхпроводимость

Открытие в конце 1986 года нового класса высокотемпературных сверхпроводящих материалов радикально расширяет возможности практического использования сверхпроводимости для создания новой техники и окажет революционизирующее воздействие на эффективность отраслей народного хозяйства.

Явление, заключающееся в полном исчезновении электрического сопротивления проводника при его охлаждении ниже критической температуры, было открыто в 1911 году, однако практическое использование этого явления началось в середине шестидесятых годов, после того как были разработаны сверхпроводящие материалы, пригодные для технических применений. В связи с тем, что критические температуры этих материалов не превышали 20 К, все созданные сверхпроводниковые устройства эксплуатировались при температурах жидкого гелия, т.е. при 4-5 К. Несмотря на дефицитность этого хладоагента, высокие энергозатраты на его ожижение, сложность и высокую стоимость систем теплоизоляции по целому ряду направлений началось практическое использование сверхпроводимости. Наиболее крупномасштабными применениями сверхпроводников явились электромагниты ускорителей заряженных частиц, термоядерных установок, МГД-генераторов. Были созданы опытные образцы сверхпроводниковых электрогенераторов, линий электропередачи, накопителей энергии, магнитных сепараторов и др. В последние годы в различных капиталистических странах началось массовое производство диагностических медицинских ЯМР-томографов со сверхпроводниковыми магнитами, потенциальный рынок которых оценивается в несколько млрд. долларов.

Открытие высокотемпературных сверхпроводников, критическая температура которых с запасом превышает температуру кипения жидкого азота, принципиально меняет экономические показатели сверхпроводниковых устройств, поскольку стоимость хладоагента и затраты на поддержание необходимой температуры снижаются в 50-100 раз. Кроме того, открытие высокотемпературной сверхпроводимости (ВТСП) сняло теоретический запрет на дальнейшее повышение критической температуры с 30 - вплоть до комнатной. Так, со времени открытия этого явления критическая температура повышена с 30 - 130 К.

Государственная научно-техническая программа предусматривает широкий комплекс работ, включающих в себя фундаментальные и прикладные исследования, направленные на решение проблемы технической реализации высокотемпературной сверхпроводимости.

В соответствии со структурой программы главными направлениями работ являются:

1. ИССЛЕДОВАНИЕ ПРИРОДЫ И СВОЙСТВ ВТСП.

Основными задачами этого направления являются фундаментальные исследования по выяснению механизма высокотемпературной сверхпроводимости, разработка теории ВТСП, прогнозирование поиска новых соединений с высокими критическими параметрами и определение их физико-химических свойств.

2. ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ НА СВОЙСТВА ВТСП МАТЕРИАЛОВ.

По данному направлению будут проводиться исследования влияния высоких давлений, механических и тепловых воздействий, ионизирующих излучений, электромагнитных полей и других внешних факторов на свойства ВТСП материалов и выработка рекомендаций по вопросам создания ВТСП материалов с оптимальными технологическими и техническими характеристиками.

3. НАУЧНЫЕ ОСНОВЫ И ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ВТСП МАТЕРИАЛОВ.

Главными задачами исследований по данному направлению являются разработка теоретических основ получения высокотемпературных сверхпроводящих материалов с заданными свойствами, синтез новых материалов с необходимыми для технической реализации параметрами, разработка технологий получения высокотемпературных сверхпроводников заданных технических форм. Ключевыми вопросами этого направления и всей программы в целом является создание технологичных и стабильных тонкопленочных структур, приемлемых для реализации в слаботочной технике, и особенно сильноточных токонесущих элементов в виде проводов, лент, кабелей и др. для использования в сильноточной технике.

4. СЛАБОТОЧНЫЕ ПРИМЕНЕНИЯ ВТСП.

Создание конкретных технических изделий на основе ВТСП материалов наиболее реально в ближайшее время именно в слаботочной технике, т.е. в микроэлектронике и вычислительной технике.

В рамках программы предполагается разработка и освоение серийного производства трех классов электронных сверхпроводниковых приборов:

СКВИДы (приборы на основе джозефсоновских переходов) как детекторы слабых магнитных полей для применения в медицине (магнитоэнцефалография), геологии и геофизике (поиск полезных ископаемых, изучение геологического строения земной коры, прогноз землетрясений), материаловедении
(неразрушающий контроль материалов, конструкций), военной технике
(обнаружение магнитных аномалий, в частности, глубинных подводных лодок), научных исследованиях, связи и навигации.

Широкое освоение и внедрение СКВИД магнитометрического метода измерений позволит в короткий срок качественно изменить многие виды измерительной техники, повысить в сотни и более раз чувствительность приборов и точность измерений, подвести измерительные возможности широкой номенклатуры датчиков к теоретическому пределу, вывести измерительную технику на высший качественно новый уровень.

Аналого-цифровые приборы (АЦП), использующие сверхбыстрые (доли пикосекунды) переключения от джозефсоновского к "гиверовскому" режиму работы, для применений в новейших системах связи, цифровых вычислительных устройствах для обработки и анализа аналоговых сигналов и др.

Приборы, основанные на эффекте появления на джозефсоновском переходе постоянного напряжения при подаче на него СВЧ сигнала, для использования в прецизионных измерительных системах (например, эталон
Вольта).

Широкое применение ВТСП найдет в вычислительной технике. Уже в настоящее время разработаны, изготовлены и испытаны макеты ячейки памяти, сверхчувствительный элемент считывания на ВТСП пленках с кратным снижением энерговыделения по сравнению с полупроводниковыми усилителями считывания, сверхскоростные линии связи, которые позволят увеличить производительность систем в 10 - 100 раз. Внедрение ВТСП в вычислительную технику даст кратное увеличение ее быстродействия и степени интеграции. Так, переход на
ВТСП соединения и снижение рабочей температуры полупроводниковых суперЭВМ позволит повысить их производительность с 10х9 до 10х12 операций/сек.

Широкие перспективы использования ВТСП открываются в СВЧ-технике и в создании датчиков видимого и ИК диапазона с высокой чувствительностью.

5. СИЛЬНОТОЧНЫЕ ПРИМЕНЕНИЯ ВТСП.

Применение ВТСП в сильноточной технике будет иметь наиболее радикальные экономические последствия для народного хозяйства.

Это направление включает в себя создание электроэнергетических устройств и систем, вырабатывающих, передающих и преобразующих электроэнергию в промышленных масштабах. Основой этого направления является способность сверхпроводников нести без потерь высокие плотности (10х9-10х10 А/м2) транспортного тока в сильных магнитных полях при температурах ниже критической. Это свойство сверхпроводников позволяет создавать электроэнергетическое оборудование различного назначения с улучшенными массогабаритными характеристиками, более высоким
КПД и значительно (в десятки раз) сниженными эксплуатационными расходами.

Так, при передаче по кабельным линиям электропередач мощностей свыше 20 млн. кВт на расстояние свыше 2000 км ожидается снижение электрических потерь на 10%, что соответствует сбережению от 7 до 10 млн. т.у.т. в год. При этом приведенные затраты на сверхпроводящую кабельную ЛЭП могут быть не больше, чем на высоковольтную ЛЭП традиционного исполнения.
Синхронные сверхпроводящие генераторы для ТЭС, АЭС и ГЭС будут иметь на
0,5-0,8% более высокий КПД и на 30% меньшие весогабаритные показатели. Предполагается создание сверхпроводниковых индуктивных накопителей энергии, которые по сравнению с гидроаккумулирующими станциями, единственным типом накопителей энергии, нашедшим промышленное применение в энергетике, будут обладать существенно более высоким КПД (до 97-98% вместо 70%). В рамках программы предполагается создание широкой гаммы электротехнических и электроэнергетических устройств, при этом масштабы суммарной экономии электроэнергии за счет массового применения ВТСП будут столь велики, что позволят радикальным образом пересмотреть сложившуюся экстенсивную стратегию развития топливно-энергетического комплекса.

Согласно структуре программы, предусматривается разработка и выпуск сверхпроводящих устройств и систем, создание которых экономически и технически целесообразно на основе традиционных гелиевых сверхпроводников.
Это сверхпроводящие сепараторы, ЯМР-томографы, магнитные системы для удержания плазмы в ТОКОМАКах и ускорителях заряженных частиц и др.
Создание таких систем кроме реального экономического эффекта от их внедрения заложит необходимую техническую и технологическую основу для быстрого перехода на ВТСП по мере создания технологичных ВТСП проводников.

6. КРИОСТАТИРОВАНИЕ.

Поскольку несмотря на значительное повышение критических температур новых сверхпроводящих материалов их абсолютное значение остается на уровне криогенных температур, одним из важнейших направлений исследований и разработок является создание высокоэкономичных, надежных автоматизированных ожижительных и рефрижераторных азотных установок, систем криостатирования для конкретных сверхпроводящих изделий, а также поиск принципиально новых методов получения холода в диапазоне рабочих температур ВТСП.

Предусматривается создание систем диагностики и контроля параметров криостатирующих устройств.

Кроме того, для изделий и систем, создаваемых на основе традиционных сверхпроводников, будут разработаны и изготовлены гелиевые установки нового поколения с высокими технико-экономическими показателями.

7. ОБЕСПЕЧЕНИЕ РАБОТ ПО ПРОГРАММЕ ВТСП.

В рамках этого направления предусматривается проведение широкого комплекса работ по научно-техническому прогнозированию и технико- экономическому обоснованию применения ВТСП, разработка и внедрение автоматизированных информационных систем, создание баз данных по ВТСП.
Кроме того будет осуществляться комплексная программа подготовки и переподготовки кадров различной квалификации для работ по проблематике
ВТСП.

Сегодня увидел и обсуждение под ним. Учитывая, что сегодня же я был на производстве сверхпроводящих кабелей, хотел вставить пару замечаний, но read-only… В итоге решил написать небольшую статью про высокотемпературные сверхпроводники.

Для начала, на всякий случай, хочется отметить, что сам термин «высокотемпературный сверхпроводник» означает сверхпроводники с критической температурой выше 77 К (-196 °C) - температуры кипения дешёвого жидкого азота. Не редко к ним относят и сверхпроводники с критической температурой около 35 К, т.к. такую температуру имел первый сверхпроводящий купрат La 2-x Ba x CuO 4 (вещество переменного состава, отсюда и x). Т.е. «высокие» температуры тут пока ещё очень низкие.

Основное распространение получило два высокотемпературных сверхпроводника - YBa 2 Cu 3 O 7-x (YBCO, Y123) и Bi 2 Sr 2 Ca 2 Cu 3 O 10+x (BSCCO, Bi-2223). Также применяются схожие с YBCO материалы, в которых иттрий заменён иным редкоземельным элементом, например гадолинием, их общее обозначение - ReBCO.
Выпускаемые YBCO, да и другие ReBCO, имеют критическую температуру на уровне 90-95 К. Выпускаемые BSCCO достигают критической температуры в 108 К.

Кроме высокой критической температуры, ReBCO и BSCCO отличаются большими значениями критического магнитного поля (в жидком гелии - более 100 Тл) и критического тока. Впрочем, с последним всё не так просто…

В сверхпроводнике электроны движутся не независимо, а парами (Куперовскими парами). Если мы хотим, чтобы ток перешёл из одного сверхпроводника в другой, то зазор между ними должен быть меньше характерного размера этой пары. Для металлов и сплавов этот размер составляет десятки, а то и сотни нанометров. А вот в YBCO и BSCCO он составляет лишь пару нанометров и доли нанометра, в зависимости от направления движения. Даже зазоры между отельными зёрнами поликристалла оказываются уже вполне ощутимым препятствием, не говоря уж о зазорах между отдельными кусками сверхпроводника. В результате сверхпроводящая керамика, если не предпринимать специальных ухищрений, способна пропускать через себя лишь относительно небольшой ток.

Проще всего проблему оказалось решить в BSCCO: его зёрна естественным образом имеют ровные края, а самое простое механическое сжатие позволяет эти зёрна упорядочить для получения высокого значения критического тока. Это позволило достаточно быстро и просто создать первое поколение высокотемпературных сверхпроводящих кабелей, а точнее - высокотемпературных сверхпроводящих лент. Они представляют собой серебряную матрицу, в которой есть множество тонких трубочек, заполненных BSCCO. Эту матрицу расплющивают, при этом зёрна сверхпроводника приобретают нужный порядок. Получаем тонкую гибкую ленту, содержащую множество отдельных плоских сверхпроводящих жил.

Увы, BSCCO материал далеко не идеальный: у него критический ток очень быстро падает с ростом внешнего магнитного поля. Критическое магнитное поле у него достаточно велико, но задолго до достижения этого предела, он теряет способность пропускать сколько-нибудь большие токи. Это очень сильно ограничивало применение высокотемпературных сверхпроводящих лент, заменить старые добрые сплавы ниобий-титан и ниобий-олово, работающие в жидком гелии, они не могли.

Совсем другое дело - ReBCO. Но создать в нём правильную ориентацию зёрен весьма тяжело. Лишь относительно недавно научились делать сверхпроводящие ленты на основе этого материала. Такие ленты, называемые вторым поколением, получают напылением сверхпроводящего материала на подложку, имеющую специальную текстуру, задающую направление роста кристаллов. Текстура, как не сложно догадаться, имеет нанометровые размеры, так что это настоящие нанотехнологии. В московской компании «СуперОкс», в которой я собственно и был, для получения такой структуры на металлическую подложку напыляют пять промежуточных слоёв, один из которых одновременно с напылением распыляется потоком быстрых ионов, падающих под определённым углом. В результате кристаллы этого слоя растут только в одном направлении, в котором ионам сложнее всего их распылять. Другие производители, а их в мире четыре, могут использовать иные технологии. Кстати, отечественные ленты используют гадолиний вместо иттрия, он оказался технологичнее.

Сверхпроводящие ленты второго поколения шириной 12 мм и толщиной 0,1 мм в жидком азоте при отсутствии внешнего магнитного поля пропускают ток до 500 А. Во внешнем магнитном поле 1 Тл критический ток всё ещё доходит до 100 А, а при 5 Тл - до 5 А. Если охладить ленту до температуры жидкого водорода (ниобиевые сплавы при такой температуре ещё даже не переходят в сверхпроводящее состояние), то та же лента сможет пропустить 500 А в поле 8 Тл, а «какие-нибудь» 200-300 А - в поле на уровне пары десятков тесла (лягушка летает). Про жидкий гелий и говорить не приходится: есть проекты магнитов на этих лентах с полем на уровне 100 Тл! Правда тут уже в полный рост возникает проблема механической прочности: магнитное поле всегда стремится разорвать электромагнит, но когда это поле достигает десятков тесла, его стремления легко реализуются…

Впрочем, все эти прекрасные технологии не решают проблемы соединения двух кусков сверхпроводника: хоть кристаллы и ориентированны в одном направлении, о полировке внешней поверхности до субнанометрового размера шероховатостей речи не идёт. У корейцев есть технология спекания отдельных лент друг с другом, но она ещё, мягко говоря, далека от совершенства. Обычно ленты соединяют друг с другом обычной пайкой обычным оловянно-свинцовым припоем или иным классическим способом. Разумеется, при этом на контакте появляется конечное сопротивление, так что создать из таких лент сверхпроводящий магнит, не требующий питания на протяжении многих лет, да и просто ЛЭП с в точности нулевыми потерями не получается. Но сопротивление контакта составляет малые доли микроома, так что даже при 500 А токе там выделяются лишь доли милливатта.

Разумеется, в научно-популярной статье читатель ищет по-больше зрелищности… Вот несколько видео моих экспериментов с высокотемпературной сверхпроводящей лентой второго поколения:

Последнее видео записал под впечатлением от комментария на YouTube, в котором автор доказывал, что сверхпроводимости не существует, а левитация магнита - совершенно самостоятельный эффект, предлагал всем желающим убедиться в его правоте, измерив непосредственно сопротивление. Как видим, сверхпроводимость всё-таки существует.

Хронология открытия сверхпроводников. Последние достижения – артефакты сверхпроводимости в системе Ag-C-S-O и неподтвержденное пока высокое значение Тс в фулеренах, содержащих галоген-водороды. A new record for the superconducting critical temperature of fullerene compounds has been established at Bell Labs: expanding the lattice of C60 single crystal by introducing CHBr3 and doping by holes via field-effect devices a maximum Tc of 117 K has been measured for 3-3.5 holes per C60 molecule (J.H. Schon, Ch. Kloc, B. Batlogg, Bell Laboratories (NJ - USA).

Первооткрыватель сверхпроводимости Камерлин-Оннес. (1911), www.superconductors.org

Авторы наиболее популярной модели сверхпроводимости (БКШ) – Джон Бардин, Леон Куппер, Джон Шриффер (1957), www.superconductors.org

Родоначальники ВТСП. Лауреаты Нобелевской премии Алекс Мюллер и Георг Беднорц, www.superconductors.org

Открытие ртуть-содержащих ВТСП-фаз на Химфаке МГУ – Е.В.Антипов и С.Н.Путилин, www.icr.chem.msu.ru

История открытия

(Третьяков Ю.Д., Гудилин E.A., Химические принципы получения металлоксидных сверхпроводников, Успехи Химии, 2000, т.69, н.1, с.3-40. )

История сверхпроводимости характеризуется цепочкой открытий все более и более сложных структур, своеобразной "химической эволюцией" от простого к сложному. Она ведет начало с 1911 г., когда голландский физик Камерлинг-Оннес, впервые получивший жидкий гелий и тем самым открывший путь к систематическим исследованиям свойств материалов при температурах близких к абсолютному нулю, обнаружил, что при 4.2 К обычная металлическая ртуть (простое вещество, представляющее собой"плохой металл") полностью теряет электрическое сопротивление. В 1933г. Мейснер и Оксенфельд показали, что сверхпроводники (СП) одновременно являются и идеальными диамагнетиками, то есть полностью выталкивают линии магнитного поля из объёма СП.

Всё это в принципе открыло широчайшие возможности для практического применения сверхпроводимости. Однако на пути к реализации этих идей длительное время существовала непреодолимая преграда - крайне низкая температура перехода в СП состояние, называемая критической температурой (Т с). За 75 лет, прошедших со времени открытия Камерлинг-Оннеса, эту температуру удалось поднять лишь до 23,2 К на интерметаллиде Nb 3 Ge, причем общепризнанные теории сверхпроводимости (БКШ) порождали неверие в принципиальную возможность преодоления этого температурного барьера.

В 1986г. Беднорц и Мюллер обнаружили способность керамики на основе оксидов меди, лантана и бария (La 2-x Ba x CuO 4) переходить в СП состояние при 30К. Сложные купраты аналогичного состава были синтезированы в 1978г. Лазаревым, Кахан и Шаплыгиным, а также французскими исследователями двумя годами позже. К сожалению, электропроводность этих образцов была измерена лишь до температуры кипения жидкого азота (77К), что не позволило обнаружить эффект сверхпроводимости.

Важнейшей чертой открытия ВТСП можно назвать то, что сверхпроводимость была обнаружена не у традиционных интерметаллидов, органических или полимерных структур, а у оксидной керамики, обычно проявляющей диэлектрические или полупроводниковые свойства. Это разрушило психологические барьеры и позволило в течении короткого времени создать новые, более совершенные поколения металлоксидных СП почти одновременно в США, Японии, Китае и России:

Февраль 1987 г. – Чу и др. синтезируют, используя идею"химического сжатия" для модифицирования структуры, СП керамику из оксидов бария, иттрия и меди YBa 2 Cu 3 O 7-x с критической температурой 93 К, то есть выше точки кипения жидкого азота.

В январе 1988г. Маеда и др. синтезируют серию соединений состава Bi 2 Sr 2 Ca n-1 Cu n O 2n+4 , среди которых фаза с n=3 имеет Т с =108К.

Месяц спустя Шенг и Херман получили сверхпроводник Tl 2 Ba 2 Ca 2 Cu 3 O 10 c T с = 125K.

В 1993г. Антипов, Путилин и др. открыли ряд ртутьсодержащих сверхпроводников состава HgBa 2 Ca n-1 Cu n O 2n+2+ d (n=1-6). В настоящее время фаза HgBa 2 Ca 2 Cu 3 O 8+d (Hg -1223) имеет наибольшее известное значение критической температуры (135К), причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164К, что лишь на 19К уступает минимальной температуре, зарегестрированной в природных условиях на поверхности Земли. Таким образом, СП"химически эволюционировали", пройдя путь от металлической ртути (4.2 К) к ртуть-содержащим ВТСП (164 К).

Всего к настоящему времени известно около 50 оригинальных слоистых ВТСП-купратов. Время от времени в печати появляются сенсационные сообщения о создании новых СП с Т с выше комнатной температуры. И хотя безмедные СП известны довольно давно, на них до сих пор не удавалось достичь сколько-нибудь высокой температуры перехода в СП состояние (рекордные значения Т с для безмедных СП достигнуты у Ba 1-x K x BiO 3 и у фазы внедрения на основе фуллерена (Сs 3 C 60). Отдельно следует упомянуть также направление, связанное с попытками синтеза"экологически безопасных" ВТСП, не содержащих тяжелых металов (Hg, Pb, Ba), например получаемых под высоким давлением оксикупратных фаз кальция.

Высокотемпературные сверхпроводники, как правило, имеют зернистую текстуру , они состоят из зерен – кристаллитов, соединенных между собой. Области соединения являются сильнодефектными, поэтому различают свойства внутригранульные и межгранульные. Например, внутригранульный критический тип много больше межгранульного. В данном разделе мы рассматриваем структуру гранулы или монокристалла. Как уже было отмечено, иттриевые, висмутовые, таллиевые и ртутные ВТСП соединения принадлежат к слоистым металлооксидам. В то же время соединения на основе висмута, таллия имеют плоскости атомов меди и кислорода, а соединения на основе иттрия содержат как плоскости, так и цепочки Cu – O. Роли цепочек и плоскостей в ВТСП материалах посвящены многочисленные работы. В настоящее время считается, что плоскости играют определяющую роль в сверхпроводимости, а цепочки служат и емкостью для электронов. Они могут быть или заполненными, или пустыми, в зависимости от содержания кислорода и легирующих примесей. Если число атомов кислорода в элементной ячейке изменяется, изменяется температура перехода или сверхпроводимость вовсе теряется. Кислородные вакансии находятся в основном в пределах одной цепочки. Например, в соединении YBa 2 Cu 3 O 7- d при d<1 существуют упорядоченные массивы цепочек, имеющих недостаток кислорода, при d=1 цепочки отсутствуют.

Можно получить серию веществ на основе висмута, таллия или ртути с различным стехиометрическим составом; при этом в элементарной ячейке будет содержаться различное число плоскостей, различными будут и свойства ВТСП, в частности, температура перехода. Также сверхпроводники объединяются общей формулой с переменными стехиометрическими коэффициентами (см. табл. 2.1). Так, например, соединения Tl-2212, Tl-2223 и Tl-2201 имеют общую формулу:

Tl 2 Ba 2 Ca n -1 Cu n O 2 n+4 , (2.1)

где n – принимает значения 2, 3, 1 соответственно, и показывает число CuO слоев.

Таблица 2.1

Основные свойства некоторых ВТСП

№ п/п Соединение (сокр. обозн.) Сингония Размеры элементарной ячейки, А 0 Т СП
(La 1-x Sr x)CuO 4 Тетрагональная a=b=3,78 c=13,2 37,5
YBa 2 Cu 3 O 7-x (Y-123) ромбическая a=3,82 b=3,88 c=13,2
Bi 2 Sr 2 Ca 2 Cu 2 O 8 (Bi-2212) ромбическая a=5,41 b=5,42 c=30,9
Bi 4 Sr 4 CaCu 3 O 14 (Bi-4413) ромбическая a=5,411 b=5,417 c=27
Bi 2 Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) ромбическая a=5,41 b=5,41 c=37,1
Tl 2 Ba 2 CuO 6 (Tl-2201) ромбическая a=5,411 b=5,473 c=23,24
Tl 2 Ba 2 CaCu 2 O 8 (Tl-2212) тетрогональная a=b=3,86 c=29,3
Tl 2 Ba 2 Ca 2 Cu 3 O 10 (Tl-2223) тетрогональная a=b=3,85 c=35,9
HgBa 2 CuO 4 (Hg-1201) тетрогональная a=b=3,86 c=9,51
HgBa 2 CaCu 2 O 6 (Hg-1212) тетрогональная a=b=3,86 c=12,7
HgBa 2 Ca 2 Cu 3 O 8 (Hg-1223) тетрогональная a=b=3,86 c=15,9

Аналогично можно записать общие формулы для висмутсодержащих или ртутьсодержащих ВТСП групп:

Bi 2 Sr 2 Ca n -1 Cu n O 2 n +4 , (2.2)

HgBa 2 Ca n -1 Cu n O 2 n +2 , (2.3)

Как оказалось изготовить однофазные образцы висмутовых, таллиевых и др. соединений довольно сложно. Обычно получается комбинация фаз, каждая из которых имеет свое число слоев CuO и CaO на ячейку и свои критические параметры. Это вызывает наличие не критической температуры, но температурного интервала в 4-6 К.

Такое «сосуществование» затрудняет темпы проведения ряда экспериментов, связанных с учетом характеристик конкретной фазы или ее поведения в магнитном поле и т.д.

Как уже отмечалось, структура ВТСП материалов, особенно внутри групп (2.1), (2.2) и других, имеет общие элементы. Поэтому рассмотрим структуру фаз: YBa 2 Cu 3 O 7- x (ромбическая сингония) и Bi 2 Sr 2 Ca 2 Cu 2 O 8 в качестве примеров.

Рис. 2.1. Кристаллическая структура YBa 2 Cu 3 O 6,5+ d , δ ≈ 0,5;
● – Ba, ▲ – Y, – Cu, ○ – O

Структура фазы (Y-123) показана на рис. 2.1. Ее можно представить в виде последовательности слоев, расположенных перпендикулярно оси с:

… (CuO )(BaO)(CuO 2)(Y)(CuO 2)(BaO)(CuO ) … (2.4)

где  – вакансия атома кислорода.

Особенностью данной структуры является относительная легкость изменения ее кислородной стехиометрии, при этом состав медного слоя (Z=0) изменяется от CuO 2 (d=-0,5) до (CuO ) (d=0,5).

При d = -0,5 элементарная ячейка тетрагональная и состав YBa 2 Cu 3 O 6 обладает полупроводниковыми свойствами. Однако при d ³ -0,2 структура становится ромбической (a¹b) вследствие заселения атомами кислорода позиций в плоскости (x,y,o) и обладает сверхпроводниковыми свойствами. При этом с возрастанием d происходит увеличение T С .

Введение дополнительных катионов в ВТСП может преследовать три цели. Во-первых, это поиск новых сверхпроводников или увеличение температуры перехода уже существующих, во-вторых, – усиление фазообразования и, наконец, в-третьих, – дополнительные катионы могут вводиться с целью увеличения пиннинга магнитных вихрей, как на включениях получающихся несверхпроводящих фаз, так и на дефектах структуры образующихся при этом.

Необходимо отметить, что замещение атомов иттрия на иные, изменяет свойства соединения.

Так, замещение атомов иттрия на атомы празеодима приводит к потере сверхпроводимости. Замещение атомов иттрия на атомы тория сдвигает температуру перехода (Т С =67 К). Легирование иттриевой керамики некоторыми лантанидами может оказаться перспективным, поскольку существенно изменяет температуру перитектического распада фазы Y-123. Дело в том, что иттриевая позиция представляет собой слабое место в структуре сверхпроводящей фазы, поскольку ион иттрия сжимает структуру, создает структурные искажения. Так, замена атомов иттрия на атомы с более крупным радиусом (Na 3+ ,S 3+ , En 3+ , Gd 3+ и др.) стабилизирует структуру и обеспечивает более высокие характеристики ВТСП материалов.

Например, японские специалисты склоняются к полному замещению иттрия в структуре на неодим.

Замещение атомов меди на другие, как правило, приводит к снижению температуры перехода до 60 – 65 К.

В завершение необходимо отметить, что кроме рассмотренной фазы Y-123 могут образоваться и другие сверхпроводящие фазы: YBa 2 Cu 4 O 8, Yba 4 Cu 7 O 14 с температурами перехода соответственно 80 К и 40 К.

Структура другого популярного ВТСП, соединения Bi-2212 показана на рис. 2.2.

Рис. 2.2. Модель структуры Bi 2 Sr 2 Ca 2 Cu 2 O 8:
● – Bi, Δ – Sr, ▲- Ca, ■ – Cu, ○ – O

Необходимо отметить, что структуры висмутовых и таллиевых ВТСП материалов имеют много общего и представляют собой когерентное срастание блоков перовскита и NaCl. В данном случае набор плоскостей по оси С выглядит следующим образом:

(CuO 2) (Ca )(CuO 2)(SrO)(OBi)(BiO)(OSr)(O 2 Cu) … (2.5)

В данной структуре первые 3 плоскости соответсвуют перовскитному блоку, а последние 5 – блоку по типу NaCl. Атом кальция занимает позицию, аналогичную позиции иттрия (рис. 2.1) и обладающую высокой концентрацией анионных вакансий.

В настоящее время проведено много работ, связанных с введением каких-либо добавок в сверхпроводники ряда BiSr 2 Ca n -1 Cu n O x . Это могут быть катионы, замещающие позиции в кристаллической решетке, или нейтральные добавки. К примеру, катион Pb 2+ позволяет улучшить электрофизические характеристики сверхпроводника, в частности, увеличить его критический ток. Замещение редкоземельными элементами и замещение свинцовых катионов приводит к увеличению пиннинга, а последнее увеличивает и значение критического магнитного поля. Введение серебра также позволяет увеличивать критический ток.

В завершение разговора о структуре ВТСП кристаллов, следует выделить основные характеристики , обоснование которых выходит за рамки данного пособия, но которые являются общими для всех полученных материалов:

1. Структуры фаз являются производными от структуры перовскита .

2. Структуры имеют большое число анионных вакансий , концентрацию которых можно варьировать (температура и скорости обжига, время и давление выдержки в кислороде и т.д.).

3. В структурах имеются атомы меди в различных степенях окисления (II и III). Вследствие изменения количества атомов кислорода в структуре происходит понижение уровня Ферми и образование дырок.

4. Структуры ВТСП фаз – слоистые , непременным их элементом является наличие плоскостей (CuO 2). Образование слоистых структур происходит либо из-за упорядочения анионных вакансий, либо из-за нарушения идеальной последовательности слоев вдоль оси 4-го порядка.

5. В этих перовскитоподобных структурах В-позиции заняты только атомами меди. Синтез структур с иными атомами в В-позициях пока результатов не дал.

Контрольные вопросы

1. Назовите основные типы ВТСП материалов.

2. Каковы особенности структуры ВТСП материалов?

3. Как влияют примеси на структуру и свойства ВТСП?

4. Какова роль цепочек и плоскостей в структуре?

Высокотемпературная сверхпроводимость

Открытие в конце 1986 года нового класса высокотемпературных сверхпроводящих материалов радикально расширяет возможности практического использования сверхпроводимости для создания новой техники и окажет революционизирующее воздействие на эффективность отраслей народного хозяйства.

Явление, заключающееся в полном исчезновении электрического сопротивления проводника при его охлаждении ниже критической температуры, было открыто в 1911 году, однако практическое использование этого явления началось в середине шестидесятых годов, после того как были разработаны сверхпроводящие материалы, пригодные для технических применений. В связи с тем, что критические температуры этих материалов не превышали 20 К, все созданные сверхпроводниковые устройства эксплуатировались при температурах жидкого гелия, т.е. при 4-5 К. Несмотря на дефицитность этого хладоагента, высокие энергозатраты на его ожижение, сложность и высокую стоимость систем теплоизоляции по целому ряду направлений началось практическое использование сверхпроводимости. Наиболее крупномасштабными применениями сверхпроводников явились электромагниты ускорителей заряженных частиц, термоядерных установок, МГД-генераторов. Были созданы опытные образцы сверхпроводниковых электрогенераторов, линий электропередачи, накопителей энергии, магнитных сепараторов и др. В последние годы в различных капиталистических странах началось массовое производство диагностических медицинских ЯМР-томографов со сверхпроводниковыми магнитами, потенциальный рынок которых оценивается в несколько млрд. долларов.

Открытие высокотемпературных сверхпроводников, критическая температура которых с запасом превышает температуру кипения жидкого азота, принципиально меняет экономические показатели сверхпроводниковых устройств, поскольку стоимость хладоагента и затраты на поддержание необходимой температуры снижаются в 50-100 раз. Кроме того, открытие высокотемпературной сверхпроводимости (ВТСП) сняло теоретический запрет на дальнейшее повышение критической температуры с 30 - вплоть до комнатной. Так, со времени открытия этого явления критическая температура повышена с 30 - 130 К.

Государственная научно-техническая программа предусматривает широкий комплекс работ, включающих в себя фундаментальные и прикладные исследования, направленные на решение проблемы технической реализации высокотемпературной сверхпроводимости.

В соответствии со структурой программы главными направлениями работ являются:

1. ИССЛЕДОВАНИЕ ПРИРОДЫ И СВОЙСТВ ВТСП.

Основными задачами этого направления являются фундаментальные исследования по выяснению механизма высокотемпературной сверхпроводимости, разработка теории ВТСП, прогнозирование поиска новых соединений с высокими критическими параметрами и определение их физико-химических свойств.

2. ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ НА СВОЙСТВА ВТСП МАТЕРИАЛОВ.

По данному направлению будут проводиться исследования влияния высоких давлений, механических и тепловых воздействий, ионизирующих излучений, электромагнитных полей и других внешних факторов на свойства ВТСП материалов и выработка рекомендаций по вопросам создания ВТСП материалов с оптимальными технологическими и техническими характеристиками.

3. НАУЧНЫЕ ОСНОВЫ И ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ВТСП МАТЕРИАЛОВ.

Главными задачами исследований по данному направлению являются разработка теоретических основ получения высокотемпературных сверхпроводящих материалов с заданными свойствами, синтез новых материалов с необходимыми для технической реализации параметрами, разработка технологий получения высокотемпературных сверхпроводников заданных технических форм. Ключевыми вопросами этого направления и всей программы в целом является создание технологичных и стабильных тонкопленочных структур, приемлемых для реализации в слаботочной технике, и особенно сильноточных токонесущих элементов в виде проводов, лент, кабелей и др. для использования в сильноточной технике.

4. СЛАБОТОЧНЫЕ ПРИМЕНЕНИЯ ВТСП.

Создание конкретных технических изделий на основе ВТСП материалов наиболее реально в ближайшее время именно в слаботочной технике, т.е. в микроэлектронике и вычислительной технике.

В рамках программы предполагается разработка и освоение серийного производства трех классов электронных сверхпроводниковых приборов:

СКВИДы (приборы на основе джозефсоновских переходов) как детекторы слабых магнитных полей для применения в медицине (магнитоэнцефалография), геологии и геофизике (поиск полезных ископаемых, изучение геологического строения земной коры, прогноз землетрясений), материаловедении (неразрушающий контроль материалов, конструкций), военной технике (обнаружение магнитных аномалий, в частности, глубинных подводных лодок), научных исследованиях, связи и навигации.

Широкое освоение и внедрение СКВИД магнитометрического метода измерений позволит в короткий срок качественно изменить многие виды измерительной техники, повысить в сотни и более раз чувствительность приборов и точность измерений, подвести измерительные возможности широкой номенклатуры датчиков к теоретическому пределу, вывести измерительную технику на высший качественно новый уровень.

Аналого-цифровые приборы (АЦП), использующие сверхбыстрые (доли пикосекунды) переключения от джозефсоновского к "гиверовскому" режиму работы, для применений в новейших системах связи, цифровых вычислительных устройствах для обработки и анализа аналоговых сигналов и др.

Приборы, основанные на эффекте появления на джозефсоновском переходе постоянного напряжения при подаче на него СВЧ сигнала, для использования в прецизионных измерительных системах (например, эталон Вольта).

Широкое применение ВТСП найдет в вычислительной технике. Уже в настоящее время разработаны, изготовлены и испытаны макеты ячейки памяти, сверхчувствительный элемент считывания на ВТСП пленках с кратным снижением энерговыделения по сравнению с полупроводниковыми усилителями считывания, сверхскоростные линии связи, которые позволят увеличить производительность систем в 10 - 100 раз. Внедрение ВТСП в вычислительную технику даст кратное увеличение ее быстродействия и степени интеграции. Так, переход на ВТСП соединения и снижение рабочей температуры полупроводниковых суперЭВМ позволит повысить их производительность с 10х9 до 10х12 операций/сек.

Одной из перспективных областей применения ВТСП будет космическая техника - бортовые и "забортовые" измерительная аппаратура и вычислительные системы (возможна работа без специальных устройств охлаждения, так как "теневая" температура у спутников - 90 К). При этом при переходе на ВТСП удельная масса охлаждающей системы снизится в 50 раз, объем уменьшится в 1000 раз, надежность возрастет в 10 раз.

Широкие перспективы использования ВТСП открываются в СВЧ-технике и в создании датчиков видимого и ИК диапазона с высокой чувствительностью.

5. СИЛЬНОТОЧНЫЕ ПРИМЕНЕНИЯ ВТСП.

Применение ВТСП в сильноточной технике будет иметь наиболее радикальные экономические последствия для народного хозяйства.

Это направление включает в себя создание электроэнергетических устройств и систем, вырабатывающих, передающих и преобразующих электроэнергию в промышленных масштабах. Основой этого направления является способность сверхпроводников нести без потерь высокие плотности (10х9-10х10 А/м2) транспортного тока в сильных магнитных полях при температурах ниже критической. Это свойство сверхпроводников позволяет создавать электроэнергетическое оборудование различного назначения с улучшенными массогабаритными характеристиками, более высоким КПД и значительно (в десятки раз) сниженными эксплуатационными расходами.

Так, при передаче по кабельным линиям электропередач мощностей свыше 20 млн. кВт на расстояние свыше 2000 км ожидается снижение электрических потерь на 10%, что соответствует сбережению от 7 до 10 млн. т.у.т. в год. При этом приведенные затраты на сверхпроводящую кабельную ЛЭП могут быть не больше, чем на высоковольтную ЛЭП традиционного исполнения. Синхронные сверхпроводящие генераторы для ТЭС, АЭС и ГЭС будут иметь на 0,5-0,8% более высокий КПД и на 30%

меньшие весогабаритные показатели. Предполагается создание сверхпроводниковых индуктивных накопителей энергии, которые по сравнению с гидроаккумулирующими станциями, единственным типом накопителей энергии, нашедшим промышленное применение в энергетике, будут обладать существенно более высоким КПД (до 97-98% вместо 70%). В рамках программы предполагается создание широкой гаммы электротехнических и электроэнергетических устройств, при этом масштабы суммарной экономии электроэнергии за счет массового применения ВТСП будут столь велики, что позволят радикальным образом пересмотреть сложившуюся экстенсивную стратегию развития топливно-энергетического комплекса.

Согласно структуре программы, предусматривается разработка и выпуск сверхпроводящих устройств и систем, создание которых экономически и технически целесообразно на основе традиционных гелиевых сверхпроводников. Это сверхпроводящие сепараторы, ЯМР-томографы, магнитные системы для удержания плазмы в ТОКОМАКах и ускорителях заряженных частиц и др. Создание таких систем кроме реального экономического эффекта от их внедрения заложит необходимую техническую и технологическую основу для быстрого перехода на ВТСП по мере создания технологичных ВТСП проводников.

6. КРИОСТАТИРОВАНИЕ.

Поскольку несмотря на значительное повышение критических температур новых сверхпроводящих материалов их абсолютное значение остается на уровне криогенных температур, одним из важнейших направлений исследований и разработок является создание высокоэкономичных, надежных автоматизированных ожижительных и рефрижераторных азотных установок, систем криостатирования для конкретных сверхпроводящих изделий, а также поиск принципиально новых методов получения холода в диапазоне рабочих температур ВТСП.