Open
Close

Авиамоделизм. юный моделист-конструктор

Даже самая простая модель самолета — это самолет в миниатюре со всеми его свойствами. Многие известные авиаконструкторы начинали с увлечения авиамоделизмом. Чтобы построить хорошую летающую модель, нужно немало потрудиться, изучить теорию полета аппаратов тяжелее воздуха. Зато какое увлекательное зрелище — полет модели и какая это радость для ее создателя и зрителей! Все многообразие авиамоделей можно разделить на несколько классов.

Самые популярные среди начинающих авиамоделистов — бумажные авиамодели. В бумажном авиамоделировании можно выделить несколько направлений.

Элементарные контурные модели.

Это простейшие летающие модели самолетов, которые вырезаются из листа бумаги несколькими взмахами ножниц. Они наиболее просты и доступны для начинающих. Нелетающие модели-копии. Они в точности повторяют внешний вид известных марок самолетов. Проектирование моделей-копий требует специальных знаний, большого терпения и труда. Занимаются ими опытные моделисты, коллекционирующие модели авиационной техники.

Свободнолетающие модели.

Такие модели, сделанные из плотной бумаги или тонкого картона, могут запускаться с помощью резины с рук, как из рогатки, или со специального устройства — катапульты. Для достижения наибольшей дальности полета относительное поперечное сечение их фюзеляжа делается меньше, чем у самолетов-прототипов. Есть свободнолетающие бумажные модели, движущиеся за счет тяги, развиваемой воздушным винтом с приводом от резиномотора или миниатюрного электромоторчика.

Безмоторные модели, запускаемые в полет с помощью нити-леера, называются планерами.

Кордовые модели летают «на привязи». Они управляются рукой авиамоделиста с помощью стальных нитей или тросиков, которые называются кордами. Кордовая модель не может удалиться от спортсмена больше чем на длину корды. Этим кордовая модель отличается от свободнолетающей. На таких моделях устанавливают двигатели внутреннего сгорания или электродвигатели, питающиеся от внешнего источника тока, подаваемого по проводникам-кордам. Бумажные кордовые модели обычно оснащаются электродвигателями. Мы с вами сегодня поговорим о наиболее доступных, и интересных широкому кругу ребят свободнолетающих моделях — тех, что запускаются с рук или катапультой.

Основные понятия о аэродинмики.

Аэродинамические силы

Почему же летают аппараты тяжелее воздуха — самолеты и их модели? Вспомните, как ветер гонит листья и бумажки вдоль улицы, поднимает их вверх. Летящую модель можно сравнить с предметом, гонимым потоком воздуха. Только воздух здесь неподвижен, а модель мчится, рассекая его. При этом воздух не только тормозит полет, но при определенных условиях создает подъемную силу. Посмотрите на рисунок здесь показано сечение крыла самолета. Если крыло будет расположено так, чтобы между его нижней плоскостью и направлением движения самолета был некоторый угол а (называемый углом атаки), то, как показывает практика, скорость потока воздуха, обтекающего крыло сверху, будет больше, чем его скорость снизу крыла. А по законам физики в том месте потока, где скорость больше, давление меньше, и наоборот. Вот почему при достаточно быстром движении самолета давление воздуха под крылом будет больше, чем над крылом. Эта разность давлений поддерживает самолет в воздухе и называется подъемной силой (Рис. 1)

На рисунке 2 показаны силы, действующие на самолет или модель в полете. Суммарное действие воздуха на летательный аппарат представляют в виде аэродинамической силы К. Эта сила является результирующей силой, действующей на отдельные части модели: крыло, фюзеляж, оперение и т. д. Направлена она всегда под углом к направлению движения.

В аэродинамике действие этой силы принято заменять действием двух ее составляющих — подъемной силы и силы сопротивления.

Подъемная сила У всегда направлена перпендикулярно направлению движения, сила сопротивления X — против движения. Сила тяжести С всегда направлена вертикально вниз. Подъемная сила зависит от площади крыла, скорости полета, плотности воздуха, угла атаки аи аэродинамического совершенства профиля крыла. Сила сопротивления зависит от геометрических размеров поперечного сечения фюзеляжа, скорости полета, плотности воздуха и качества обработки поверхностей. При прочих равных условиях дальше летит та модель, у которой поверхность отделана более тщательно. Дальность полета определяется аэродинамическим качеством К, равным отношению подъемной силы к силе сопро-V тивления: К = —, то есть аэродинамическое качество показывает, сколько раз подъемная сила крыл) больше силы сопротивления модели В планирующем полете подъемы сила модели V обычно равна весу дели, а сила сопротивления X в раз меньше, поэтому дальность полета будет в 10—15 раз больше высоты И, с которой начался планируют полет, то есть К= Ют-15, Следовательно, чем легче модель, чем она тщательнее изготовлена, тем большей дальнее полета можно достигнуть.

Центровка модели

Чтобы полет был устойчивым, модель, должна иметь распределенную центровку; центр тяжес " ЦТ должен совпасть с центром давления крыла ЦД или быть несколько впереди его (центром давления крыла называется точка приложения аэродинамической силы).

У прямоугольного профилированного крыла ЦД находится примерно ни первой четверти ширины крыла. У простых бумажных моделей профиль крыла, как правило, очень тонкий либо вообще плоский. У таких крыльев центр давления находится в геометрическом центре площади.

У прямоугольных крыльев центр площади находится на пересечении его диагона(см. р и с. 3). На рисунке 3. показано, как определять центр площади любой другой формы крыла. Нужно вырезать крыло из плотного картона, установить его на ребро линейки и уравновесить. Точка пересечения ребра линейки с линией проведенной посередине крыла, и есть центр тяжести и центр давления крыла Центр тяжести модели находят тогд когда уже изготовлен груз. Для чего сн нужен? У простейших свободнолетающих моделей нет двигателя, и силу ги, движущую модель вперед, созда ее собственная масса. Для повышения инерционности модели в фюзеляж вклеивают груз, вырезанный из фанеры или нескольких слоев плотного картона. Наличие груза в носовой части фюзеляжа обеспечивает достаточну устойчивость модели в полете Зная центр тяжести модели и давления, подбирают правильное пол жение крыла на модели.

У моделей, летающих с большими скоростями (пускаемых с катапульты), ЦТ должен-быть впереди ЦД, а у свободно планирующих — совпадать.На прямолинейности полета особенно сильно сказывается «прогибы» фюзеляжа, то есть искривление в процессе склейки. За его формой нужно следить; и в процессе регулировки, и во время запусков, так и при ударах о препятствия он может деформироваться., Вообще свободнолетающие модели, имея большие скорости полета, часто деформируются при ударах о препятствия, поэтому они должны изготавливаться очень тщательно.

После полета не рекомендуется брать модель за крылья, стабилизатор и киль. Берите их только за носовую часть, то есть за груз. Начиная пробные полеты, старайтесь пускать модели на открытом месте, (там, где нет препятствий и людей). Только изучив «повадки» модели, определив ее траекторию и хорошо отрегулировав, можно запускать ее в залах и коридорах. Но при этом помните, что развившая большую скорость модель может поранить кого-нибудь из зрителей. Поэтому при запусках следите, чтобы предполагаемая траектория вашей модели не была направлена в сторону людей.

Как можно управлять полетом модели? В отличие от кордовых моделей свободнолетающими моделями невозможно управлять после старта. Но можно отрегулировать модель так, чтобы она летела по заданной траектории. Для управления в вертикальной плоскости (по тангажу) на самолетах служат рули высоты. На моделх для этого достаточно отогнуть заднею кромку стабилизатора вверх или вниз. При этом модель будет соответственно набирать высоту (и даже делать мертвую петлю) или пикировать. Для управления по крену достаточно отогнуть в противоположные стороны (вверх и вниз) кромки крыльев. На реальных самолетах на задней кромке крыла установлены специальные управляемы поверхности — элероны.

Для управления в горизонтальной плоскости на самолетах применяются рули направления. На модели для этой цели можно отогнуть в сторону заднюю кромку вертикального оперения. Когда (модель выполняется по схеме «бесхвостка», то есть без стабилизатора, отгиб, задней кромки крыла обеспечивает управление и по крену, и по таннажу, у настоящих самолетов такие рулевые поверхности, выполняющие роль, и элерона, и руля высоты, называются элеронами.

Работа с бумагой. Инструмент.

Для наших бумажных моделей используются, как правило, жесткие виды бумаги: чертежная бумага- ватман, тонкий картон. Для отделки и декоративных аппликаций применяется цветная бумага из наборов для детского творчества. Для резки бумаги рекомендуем изготовить специальные резцы и линейки. Особенно это важно, когда моделированием начинают заниматься младшие школьники. Они, как правило, еще плохо владеют своими руками, и даже обычное вырезание ножницами для них проблема. Их рука привыкла держать только карандаш и ручку. Поэтому рукоятку резца лучше сделать граненой (как карандаш) и слегка изогнутой (с м. рис. 4).

Изготовление таких резцов несложно. Их могут делать сами ребята в кружках технического творчества, в писарских лагерях. Лезвием для резца служит инструментальная сталь от полотна ножовки по металлу. Изготовить лезвие надо попросить старших по нашему чертежу (см. рис. 4) Рукоятки резцов делается из листового оргстекла. Нарежьте заготовки длиной 120 мм. С одного конца засверлите два отверстие сверлом 2 мм на глубину 20 мм, Потом приготовьте настольные тиски — разведите их губки примерно на 50 мм. Нагрейте засверленный конец рукоятки, пока оргстекло не размягчится, и одновременно нагрейте хвостовик. Возьмите лезвие плоскогубцами и вставьте в отверстие нагретой рукоятки. Разогретое, оно войдет туда свободно. После этого между двумя пластинами из оргстекла вставьте резец и зажмите весь этот пакет в губках тисков. Концы пластин должны сойтись между собой и зажать лезвие (см. рис. 4). Подержите так минут 5—10. Рукоятка остынет, и лезвие «намертво» впрессуется в нее. Теперь обработайте рукоятку — снимите наплывы размягченного оргстекла и сделайте грани. Еще немного разогрейте рукоятку, слегка согните и так остудите. Величина прогиба не должна превышать 5—6 мм. Заточите резец на оселке — инструмент готов. Для резки бумаги необходимы еще линейка из оргстекла толщиной 4 — 5 мм, длиной 30—35 см и шириной 30 — 35 мм. На нее обязательно нужно наклеить полоску из изоляционной ленты шириной 5 мм.

Почему линейка должна быть из оргстекла? И зачем изоляционная лента?

Такая линейка прозрачна, по ней легко скользит резец и не тупится об нее. Лента приклеивается для того, чтобы линейка не скользила по бумаге при работе. Ведь детали моделей должны быть изготовлены очень точно. Младшие школьники осваивают работу с этими двумя инструментами после двух-трех занятий. Несколько советов о приемах работы самодельными инструментами. Резец надо держать так, как вы держите карандаш или ручку. Линейку при резке кладите, чтобы ее конец был направлен к плечу режущей руки, то есть резать бумагу резцом нужно толь-ко «к себе». При резне линейку удерживают разведенными пальцами, прижав ее к бумаге и не отнимая руки до тех пор, пока не отрежут нужную деталь. Нажимать на резец сильно не рекомендуется. Можно сломать острый конец лезвия. Лучше провести точно несколько раз. Ни в коем случае не зажимайте резец в кулак, не давите на него с силой!

Если резец не режет, значит, он затупился и его нужно заточить. Необходимо приучить свою руку соразмерять силу нажима. Предлагаемый резец позволит вам вырезать детали любой, самой замысловатой и сложной формы. А вам придется вырезать из цветной бумаги буквы, номера самолетов и другие аппликации. Освоить такую резку можно только тренировкой руки. Чтобы сгибы деталей из бумаги и картона получались аккуратными, ровными, их надо предварительно обработать. Лучше всего их «подрезать». Что значит подрезать бумагу? Нужно по линиям сгиба провести резцом по линейке так, чтобы был надрезан только верхний слой бумаги, примерно на "/з ее толщины. На первый взгляд как будто простая операция. Но начинающим моделистам приходится упражняться по 1,5—2 часа ежедневно, чтобы научиться правильно подрезать бумагу по линиям сгиба. Потренируйтесь и вы. Попробуйте делать из бумаги «гармошку». При этом помните, что надрезанный слой при перегибе должен оставаться снаружи.

На наших развертках моделей все линии сгиба, обозначенные пунктиром (— —-----), надрезаются по лицевой стороне развертки. Линии, обозначенные штрих-пунктиром (—.—.—). надрезаются с обратной стороны. Резать бумагу нужно обязательно на фанерной подложке, а еще лучше на пластиковой (из сополимера). В крайнем случае, если вам не дается операция подрезания сгибов и зы прорезаете бумагу, можно продавливать эти линии тупой стороной столового ножа или специальной «косточкой». Но качество сгибов будет, конечно, хуже.

Несколько слов о клеях.

Толстые сорта бумаги и картон можно склеивать любым клеем. Наиболее надежно склеивают клеи ПВА (поливи-килацетатный), нитроцеллюлозный марки АГО, «Китификс». Клей «Момент» нужно использовать только для «прихватки». Его клеевой шов эластичен, и надежно приклеить детали модели им нельзя. Тонкие сорта бумаги рекомендуется склеязать клеями БФ-2 и нитроцеллю-яозными. Конторский клей КС (силикатный) и клей ПВА размягчают бумагу и при высыхании коробят детали моделей. Детали, выполненные из пенопласта марки ПС (полистирольный, белого цвета), рекомендуется приклеивать только клеем ПВА или БФ-2; детали из желтого пенопласта (марки ПХВ) — нитро-целлюлозными клеями и клеем ПВА. Теперь можно смело приступать к изготовлению моделей.

На финальном этапе испытаний аэродинамической модели нового гражданского лайнера МС-21 в аэродинамической трубе ЦАГИ, модель была выполнена в масштабе - 1:8. В современной истории отечественного авиастроения испытания на такой крупной модели проводились впервые.

Аэродинамическая труба и компьютер

МС-21 полностью был спроектирован с помощью компьютеров на основе 3D-моделирования всех его компонентов. Это позволило анализировать и прогнозировать многие аспекты поведения самолёта с использованием современного программного обеспечения. Но продувки моделей в аэродинамических трубах не утратили своей актуальности, они на практике подтверждают многие компьютерные расчёты.

Первые испытания в аэродинамической трубе моделей гражданского лайнера для измерения нагрузок, действующих на агрегаты планера, начались ещё в 2011 году. Специально для этого в ЦАГИ изготовили аэродинамическую модель масштаба 1:14. Уже тогда конструкторы «Иркута» сопоставили предварительные расчёты с результатами продувок и убедились в их совпадении.

Размер имеет значение

Для финального этапа испытаний в аэродинамической трубе Т-104 специалисты «Иркута» и ЦАГИ решили использовать новую, ещё более детальную модель МС-21 масштаба 1:8.

Т-104 - одна из самых больших аэродинамических труб в стране, её диаметр - семь метров.

Выбранный масштаб позволил проводить измерения нагрузок на агрегатах, например, створках шасси, которые невозможно выполнить на более мелких моделях. Кроме того, на такую модель можно установить большее количество многокомпонентных тензовесов для измерения сил, воздействующих на аэродинамические поверхности и элементы механизации планера самолёта, в том числе, - на стойки и створки шасси, секции предкрылков и закрылков, элероны, оперение. Всего было установлено 20 тензовесов. Такое количество позволило существенно сократить число дорогостоящих пусков аэродинамической трубы, так как за одну продувку регистрировалась информация со всех датчиков.

Во время испытаний в 2014 году каждый час в Жуковском проходило по две-три серии продувок модели. Инженеры наблюдали, как ведёт себя модель на разных этапах полёта во взлётной, посадочной и крейсерской конфигурациях при разных углах атаки и скольжения. На финальном этапе испытаний в 2015 ЦАГИ сделало до 700 продувок крупномасштабной модели.

Испытания на столь крупных моделях гражданских самолётов не проводились в течение последних 20 лет, - говорит Геннадий Андреев, кандидат технических наук, начальник сектора отделения аэродинамики самолётов и ракет.

Создание такой крупной модели МС-21 позволило учесть некоторые факторы, связанные с масштабным эффектом, например, обледенение самолёта. На разных стадиях полёта в зависимости от климатических условий может образовываться ледяной покров от 2 до 76 мм.

В ЦАГИ, например, раньше и сейчас при продувке малых моделей самолёта использовались имитаторы льда, сделанные из дерева. Сегодня для крупномасштабных моделей и полумоделей имитаторы льда изготавливаются при помощи метода компьютерного моделирования из специального пластика.

Результаты продувок с повышенной точностью позволят в дальнейшем сократить время испытаний самолётов и снизить финансовые затраты, ведь тестовые полёты существенно дороже стендовых испытаний.

Отечественный опыт говорит о том, что востребованность в продувках моделей самолётов в аэродинамических трубах только увеличивается. Все большее количество отделов ЦАГИ переходит на двух, а иногда и трёхсменные режимы работы. Помимо традиционных заказчиков - военных, крупных иностранных компаний - всё больше работ выполняется для отечественных производителей гражданской техники.

По материалам журнала ОАК "Горизонты" №3, 2014 г.

Во время проектирования нового самолета необходимо проверить, насколько удачно выбраны форма и размеры, как послушен будет он управлению, как велико сопротивление, оказываемое самолетом в воздухе во время полета, и т. д.
В аэродинамических трубах испытывают небольшие модели, представляющие собой по форме точную копию проверяемого самолета. Модели самолета, которые для этого делают, называют аэродинамическими или продувочными моделями .
Аэродинамическая труба (фиг. 3) представляет собой в основной своей части цилиндрический канал, в котором с помощью вентилятора создается поток воздуха значительной скорости (обычно от 30 до 50 м/сек ).


Поместив в трубу (в рабочую часть) какую-либо модель: самолет, крыло, часть фюзеляжа с мотором и т. д., можно замерять силы, которые будут действовать на модель. Величину сил замеряют на специальных весах.
Модель подвешивается в трубе в середине рабочего пространства при помощи стальных проволок - расчалок. Чтобы придать подвешенной модели более устойчивое положение, снизу к ней подвешиваются на проволочках, пропущенных через нижнюю поверхность трубы, грузики.
Испытания в аэродинамической трубе имеют огромное значение в деле развития авиации. Они помогают найти наилучшие формы самолета и отдельных его частей.
Так, например, крылья самолета различаются по их поперечному сечению. Это сечение (или профиль) крыла может иметь весьма разнообразные формы (фиг. 4).

Для того чтобы оценить тот или иной профиль крыла (ту или иную дужку), изготовляют небольшую модель крыла (фиг. 5) и испытывают ее в аэродинамической трубе при различных скоростях и при различных положениях модели по отношению к потоку воздуха.
Само собой понятно, что для получения результатов, которые соответствовали бы действительности, необходимо, чтобы модель по форме в точности соответствовала строящемуся самолету и отличалась от него только размерами.


Поэтому изготовление моделей требует от столяра большой тщательности и добросовестности. Все размеры и формы, указанные в чертеже модели, должны быть тщательно соблюдены.
Особое внимание необходимо обращать на то, чтобы все криволинейные обводы были плавные, а модель была изготовлена из такого материала, который давал бы меньше искажений при усушке. Модель должна иметь устойчивую форму, независимо от изменений температуры и влажности воздуха в пределах комнатных температур.

Source unknown

В архиве размещено описание легкого одноместного самолета оригинальной схемы.
Самолет носит название "Quickie".

Архив представляет собой отсканированную рукопись со схемами в формате Adobe PDF.

Хотя на первый взгляд, этот самолет кажется уж чересчур необычным и может вызвать недоверие, все же, прочитайте следуюший текст.
Это - выдержка из книги В.П.Кондратьева "Самолеты строим сами". Как следует из его слов, самолет построенный по такой схеме обещает очень даже хорошие характеристики.

Достоинства «утки» хорошо известны. Вкратце они сводятся к следующему, в отличие от нормальной схемы, у статически устойчивой «утки» подъемная сила горизонтального балансирующе-го оперения суммируется с подъемной силой крыла. Поэтому при тех же несущих свойствах площадь крыла можно, грубо говоря, уменьшить на величину площади оперения, в результате чего уменьшаются размеры, масса и аэродинамическое сопротивление самолета, а его аэро-динамическое качество растет (рис 97). Еще более выгодным является тандем, который по способу балансировки принципиально не отлича-ется от «утки», но позволяет создать еще более компактную машину. По сути дела, в тандемной компоновке общая несущая площадь разбивается на два равных или приблизительно равных крыла, линейные размеры которых примерно в 1,4 раза меньше аналогичного крыла самолета нормальной схемы.

Отрицательные же свойства «утки» связаны, прежде всего, с влиянием переднего крыла на заднее. Переднее скашивает вниз и подторма-живает воздушный поток, обтекающий заднее крыло, его эффективность падает (рис 98). Оптимальное решение этой проблемы в том, чтобы разнести как можно дальше крылья по длине фюзеляжа и по высоте. Для того чтобы заднее крыло не попадало в вихревой след переднего при полете на больших углах атаки, переднее крыло поднимают выше заднего или опускают его как можно ниже. Так сделано, в частности, на тандеме «Квики». Несоблюдение этого условия приводит к продольной неустойчивости на больших углах атаки.

Следует учитывать и еще одно условие. При полете на больших углах атаки перед сваливанием срыв потока должен наступать в первую очередь на переднем крыле. В противном случае самолет при сваливании будет резко задирать нос, и переходить в штопор. Это явление называется «подхват» и считается совершенно недопустимым. Способ борьбы с «подхватом» на «утке» найден давно: достаточно увеличить угол установки переднего крыла по отношению к заднему. Разница в углах установки должна составлять 2—3°, что гарантирует срыв потока в первую очередь на переднем крыле. Далее самолет автоматически опускает нос, переходит на мень-шие углы атаки и набирает скорость — таким образом, реализуется идея создания несваливаемого самолета, конечно, при соблюдении требуемой центровки.

..
Самолеты схемы тандем и их аэродинамические особенности :
Затенение заднего крыла передним при полете на больших углах атаки. 1 - малая интерференция в крейсерском полете на малых углах атаки; 2 - сильное затенение заднего крыла на больших углах самолета неудачной схемы, 3 - удачное расположение крыльев с малой интерференцией на больших углах атаки (m - коэффициент продольного момента отрицательный, наклон кривой xapaктepeн для устойчивого самолета, α - угол атаки)

Строительство тандемов носило эпизодический характер до тех пор. пока в 1978 г. все тог же неутомимый Рутан не продемонстрировал на слете конструкторов-любителей США в городе Ошкоше свой вызывающе «непонятный» тандем «Квики». Приступая к разработке этой машины, Рутан ставил задачу создания самолета с высокими летными характеристиками при двигателе минимально возможной мощности. Конечно, наилучшие результаты можно было по-лучить, используя тандемную схему. Действительно, два крыла площадью примерно по 2,5 м^2 позволили сделать самолет минимальных габаритных размеров с наименьшим аэродинамиче-ским сопротивлением и высоким аэродинамиче-ским качеством. При этом двигателя в 18 л. с. хватило для достижения скорости 220 км/ч, скороподъемности 3 м/с, потолка 4600 м. Взлетная масса самолета, изготовленного целиком из пластика, составляет 230 кг. Как и предыдущие творения Рутана, «Квики» был размножен любителями разных стран в десятках экземпляров. Американские авиационные специалисты считают «Квики» «минимальным» самолетом. Он экономичен, дешев и нетрудоемок в постройке. Производственный цикл его изготовления составляет всего 400 человеко-часов. Конструкторы-любители многих стран могут приобрести и чертежи, и набор заготовок, и полностью гото-вый аппарат.

Последователи Рутана нашлись и в нашей стране. На СЛА-84 куйбышевский самодеятельный клуб «Аэропракт», возглавляемый студентом Ю. Яковлевым, представил свой вариант «Квики» —А-8

Хороших самодеятельных клубов в нашей стране уже немало. Куйбышевский — один из самых известных. «Авиация на практике» — так члены клуба расшифровывают название своей «фирмы», созданной в 1974 г. в красном уголке заводского общежития выпускником Харьковского авиационного института Василием Мирошником. Судьба «Аэропракта» складывалась труд-но. Клуб неоднократно закрывался, «разгонялся», менял адреса и руководителей. Однако неудачи и трудности только закаляли молодых энтузи-астов.

За более чем пятнадцатилетнюю историю через «Аэропракт» прошли десятки человек — школьников, студентов, молодых рабочих, ставших впоследствии хорошими инженерами, конструкторами, летчиками. В традициях «Аэропракта» полная свобода технической мысли и демократия. В клубе всегда существовало не-сколько небольших творческих групп, параллельно строивших три-четыре летательных аппарата. А для самых смелых и «бредовых» технических идей всегда существовал лишь один судья — практика и собственный опыт. Именно такая атмосфера творческого сотрудничества н сорев-нования стала постоянным источником энтузи-азма, благодаря которому «Аэропракт» до сих пор существует. Именно такие условия дали возможность наиболее полно проявить талант наших лучших конструкторов-любителей, в том числе Василия Мирошника, Петра Альмурзнна, Михаила Волынца, Игоря Вахрушева, Юрия Яковлева и многих других — постоянных участ-ников и призеров слетов СЛА.

Самолеты, созданные в «Аэропракте», хорошо известны. Для того чтобы лучше представить масштабы деятельности «Аэропракта», достаточ-но лишь напомнить названия аппаратов этого клуба, принимавших участие в слетах СЛА. Сре-ди них — самолеты А-6, А-11М, А-12, гидросамолет А-05, планеры А-7, А-10Б и мотопланер А-10А, имеющие «фирменное» обозначение «А» и построенные в «филиале» «Аэропракта» — СКБ Куйбышевского авиационного института под руководством В. Мирошника. Почти все пере-численные летательные аппараты были призерами слетов.

Наибольший успех выпал на долю тандема А-8 («Аэропракт-8»), построенного студентом Куйбышевского авиационного института Юрием Яковлевым.

Внешне А-8 напоминает «Квики». Но надо отметить, что до тандема Ю. Яковлева у нас в стране об особенностях этой схемы было известно очень мало. Каким должно быть взаимное расположение крыльев и их профиль, где расположить центр тяжести самолета, как поведет себя машина при полете на больших углах атаки? На все эти вопросы можно было ответить, лишь испытав аппарат.

..
Самолет-тандем А-8 (Ю. Яковлев, "Аэропракт"). Площадь переднего крыла - 2,47 м2, площадь заднего крыла - 2,44 м^2, взлетная масса - 223 кг, масса пустого - 143 кг, максимальное аэродинамическое качество - 12, максимально допустимая скорость - 300 км/ч, максимальная эксплуатационная перегрузка - 6, разбег - 150 м, пробег - 150 м.
1 - двигатель, 2 - педали, 3 - воздухозаборник вентилятора кабины, 4 - узлы навески крыльев, 5 - тяги управления элеронами, 6 - элерон, 7 - тяги управления рулем направления и хвостовым колесом (трос в трубчатой оболочке), 8 - вал управления, 9 - парашют ПЛП-60, 10 - рычаг управления двигателем, 11 - бензобак, 12 - тяги управления рулем высоты, 13 - рукоятка запуска двигателя, 14 - резиновые амортизаторы подвески двигателя, 15 - руль высоты, 16 - боковая ручка управления, 17 - замок фонаря, 18 - выключатель зажигания, 19 - указатель скорости, 20 - высотомер, 21 - авиагоризонт, 22 - вариометр. 23 - акселерометр, 14 - вольтметр

А-8 построен был очень быстро, но летать стал не сразу. Попытка первого взлета на СЛА-84 в Коктебеле завершилась неудачей: после короткого разбега самолет скапотировал. Пришлось существенно сдвинуть назад центровку и изменить углы установки крыльев. Только после этих доработок зимой 1985 г. самолет смог подняться в воздух, демонстрируя все преимущества необычной аэродинамической компоновки. Компактность, малая смачиваемая поверхность и, как следствие, низкое аэродинамическое сопротивление, присущие самолетам такой аэродинамической схемы, позволили на А-8, оснащенном мотором мощностью 35 л. с, добиться максимальной скорости 220 км/ч и скороподъемности 5 м/с. Испытания, проведенные летчиком-испытателем В. Макагоновым, показали, что самолет легок и прост в; управлении, обладает хорошей маневренностью и не срывается в штопор. На тандеме успешно летали его создатели и профессиональные пилоты. Для читателей будет представлять интерес оценка, данная самолету В. Макагоновым:

— При выполнении пробежек на СЛА-84 у А-8 обнаружилась несбалансированность в продольном канале управления, вследствие которой на разбеге развивался значительный пикирующий момент от заднего крыла на скорости, меньшей скорости отрыва. Этот момент невозможно было компенсировать рулем высоты. Пос-ле слета задачу сбалансированного взлета аэропрактовцы решили путем уменьшения угла установки заднего крыла до 0°. Этого оказалось достаточно, чтобы на разбеге при полностью взятой на себя ручке управления скорость подъема хвостового колеса до взлетного положения и скорость отрыва практически совпадали. После отрыва самолет легко балансируется в продольном канале. Тенденции к развороту и кренеиию отсутствуют. Максимальная скороподъемность — 5 м/с получена на скорости 90 км/ч. В горизонтальном полете достигнута максимальная скорость 190 км/ч. Самолет охотно увеличивает скорость до 220 км/ч при незначи-тельном снижении и при выходе в горизонтальный полет долго удерживает ее. Очевидно, при более удачном подборе воздушного винта фиксированного шага скорость может быть и большей. Во всем диапазоне скоростей самолет устойчив и хорошо управляем, перекрестные связи в боко-вой динамике проявляются четко. При полностью выбранной на себя ручке управления и работе двигателя на малом газе на скорости 80 км/ч наблюдается срыв потока на переднем крыле, самолет немного опускает нос с последующим восстановлением обтекания и увеличением тангажа. Процесс повторяется в автоколебательном режиме с частотой 2—3 колебания в секунду с амплитудой 5—10°. Срыв нерезкий, поэтому динамика имеет плавный характер. Тенденций к кренению и развороту при срыве не наблю-дается. Зависимость усилий на ручке и педалях от их хода линейна с максимальными значениями усилий по элеронам и рулю, высоты не более 3 кг и по рулю направления не более 7—8 кг. На самолете применена боковая ручка управления, поэтому расходы ручки невелики. Самолет продемонстрировал хорошую маневренность. На скорости 160 км/ч вираж выполняется с креном 60°, а форсированный вираж со ско-рости 210 км/ч с креном 80°. Кистевое управление, кресло эргономической выгодной формы и отличный с точки зрения обзора фонарь создают достаточно комфортные условия полета.

Накануне СЛА-85 «Аэропракт» в очередной раз закрыли, и все летательные аппараты оказались в опечатанном помещении. Юрию Яковлеву и его друзьям пришлось приложить немало усилий, прежде чем А-8 и другие самолеты клуба были доставлены в Киев. Попав на слет с небольшим опозданием, А-8 сразу же привлек к себе внимание и зрителей, и специалистов, а великолепные полеты В. Макагонова во многом способствовали тому, что тандем стал одним из самых популярных самолетов слета. При подве-дении итогов А-8 признан лучшим эксперимен-тальным самолетом. Его автор был удостоен призов ЦК ВЛКСМ, журнала «Техника — молодежи» и ЦАГИ. По рекомендации технической комиссии слета решением Минавиапрома А-8 передан в ЦАГИ для продувок в аэродинами-ческой трубе, а затем в Летно-испытательный институт для более детальных исследований в полете. Главным же призом для Юрия Яковлева, конечно, стало приглашение работать в ОКБ имени О. К. Антонова.

А-8 изготовлен целиком нз пластиков. Перед-нее и заднее однолонжеронные крылья имеют примерно одинаковую конструкцию. Крылья сде-ланы отъемными, но разъемов по размаху не имеют. При стыковке крылья вкладываются в специальные вырезы фюзеляжа. Переднее крыло снабжено аэродинамическим профилем RAF-32 н установлено под углом +3°, заднее с профилем «Вортман» FX-60-126 установлено с углом 0°.

Лонжероны крыльев имеют стенку, изготовлен-ную из стеклоткани, и полки, выложенные из углеволокна. Обшивка крыльев трехслойная {стеклоткань — пенопласт — стеклоткань). При выклейке деталей и сборке агрегатов планера А-8 использованы различные эпоксидные клеи, в основном К-153.

Фюзеляж типа полумонокок также имеет трех-слойную пластиковую конструкцию. Он выклеен зацело с килем. Шассн состоит из двух колес от карта размером 300х100 мм, установленных в специальных обтекателях на концах переднего крыла, и стеклопластнкового рессорного костыля с управляемым хвостовым колесом размером 140х60 мм. Главные колеса снабжены механи-ческими тормозами. Роль амортизатора шасси выполняет само довольно упругое переднее крыло. В систему управления самолета входят: закрылок на переднем крыле, выполняющий функции руля высоты, элероны на заднем крыле и руль направления. Привод управления элеро-нами и рулем высоты выведен на боковую ручку с малыми ходами, при этом ручка летчика в по-лете лежит на специальном подлокотнике. Таким образом практически реализован принцип кисте-вого управления. Боковая ручка управления А-8 на слете получила высокую оценку всех пилотов.

На А-8 использован двигатель РМЗ-640 от снегохода «Буран». Мотор развивает мощность 35 л. с. при 5000 об/мин. Воздушный винт имеет диаметр 1,1 м и шаг 0,7 м. Максимальная стати-ческая тяга винта — 65 кг. Бензобак расположен в носовой части фюзеляжа под ногами пилота. Мотор рассчитан на использование бензина А-76.

Единственный вопрос меня больше всего беспокоит после прочитанного:
Какова была дальнейшая судьба самолета А-8?
Куда же исчез самолет А-8 из ассортимента производства на нынешнем "Аэропракте"?

Изобретение относится к области аэродинамики и может быть использовано при изготовлении аэродинамической модели (АДМ) транспортного средства (ТС), например самолетов, ракет, автомобилей, железнодорожного транспорта и т.д. Задачей изобретения является ускорение процесса создания высокодренированной модели и улучшение качества проведения эксперимента по визуализации ее обтекания. Аэродинамическая модель самолета из фотополимерного материала с дренажной системой выпуска красителей содержит носовую и хвостовую части фюзеляжа с гондолами двигателей, хвостовое оперение и консоль крыла. Модель изготовлена из фотополимера, устойчивого к воде, и снабжена устройством прокачки жидкости для имитации работы двигателя, соединенным гибким тросом с внешним приводом, причем каналы для подачи красителей имеют переходную часть с переменным диаметром и калиброванные сопла для выпуска красителей. Технический результат - возможность промывки каналов внутри модели, уменьшение сроков изготовления модели и возможность проведения испытаний аэродинамической модели из фотополимерного материала в гидродинамической трубе. 5 з.п. ф-лы, 3 ил.

Рисунки к патенту РФ 2453820

Изобретение относится к области аэродинамики и может быть использовано при изготовлении аэродинамической модели (АДМ) транспортного средства (ТС), например самолетов, ракет, автомобилей, железнодорожного транспорта и т.д.

Изготовление АДМ по традиционной технологии основано на механической обработке составляющих их деталей из высокопрочной стали и алюминиевых сплавов и является весьма трудоемким процессом. Цикл изготовления модели, соответствующей по заданным в техническом задании параметрам, составляет ~6 месяцев и сокращение этого цикла ограничено физическими условиями процесса резания на механообрабатывающем оборудовании, что приводит к значительным срокам доводки аэродинамических характеристик транспортных средств.

Известны цельнометаллические АДМ (патент № 172520, опубл. 29.06.1965 г., заявка № 94023217, опубл. 10.03.1996 г; патент № 377663, опубл. 17.04.1973 г., МПК G01M 9/08), в которых дренирование модели производится вручную.

Общий недостаток традиционного способа изготовления АДМ - большое количество механической и слесарной обработки и, как следствие, высокая трудоемкость (от 500÷800 до 1500÷2000 нормочасов).

Сравнительно новый способ изготовления АДМ с помощью формирования сменной обшивки из композиционного материала защищен патентом № 2083967, опубл. 10.07.1997 г., МПК G01M 9/08 - универсальная аэродинамическая модель, преимущественно крыло, содержащая упругий каркас, соединенный со сменной обшивкой. Обшивка изготавливается формованием композиционного материала в заранее изготовленную прессформу, обработанную по профилю нервюр, или корку обшивки из полимерного материала, обработанную по профилю нервюр с последующим покрытием слоем композиционного материала, при этом для дренирования обшивки к внешнему слою приклеивают ленты или диски с калиброванными дренажными отверстиями и штуцерами для подсоединения дренажных трасс. Изготовление прессформы требует 3- или 5-координатной обработки на станках с ЧПУ. Таким образом, недостатком этого изобретения является высокая трудоемкость изготовления модели, которая составляет от 700÷800 до 1500÷2000 нормочасов.

Наиболее близким техническим решением является изобретение по патенту США № 6553823, 2002 г., МПК G01M 9/08, представляющее собой полумодель для исследования распределения давления вдоль поверхности крыла, с дренированием ранее определенных сечений по потоку. Крыло изготовлено методом послойного синтеза за несколько итераций. Каналы выращиваются непосредственно при изготовлении крыла.

Существенным недостатком прототипа является необходимость механической доработки большого количества отверстий (сверление, развертка) для очистки от фотополимера узких каналов перед соплами и геометрической калибровки сопел выпуска газа. Последнее необходимо для ламинарности вытекающей струи газа. Соответствующая доработка требует значительных дополнительных затрат времени.

Задачей изобретения является ускорение процесса создания высокодренированной модели и улучшение качества проведения эксперимента в гидродинамической трубе.

Технический результат заключается в возможности промывки каналов внутри модели, уменьшении сроков изготовления модели и возможности проведения испытаний аэродинамической модели из фотополимерного материала в гидродинамической трубе.

Технический результат достигается тем, что аэродинамическая модель самолета из фотополимерного материала с дренажной системой выпуска красителей, состоящая из носовой части фюзеляжа, консолей крыла и центральной части фюзеляжа с гондолами двигателей и хвостовым оперением и кронштейна для крепления модели, изготовлена из фотополимера, устойчивого к воде, и снабжена устройством прокачки жидкости для имитации работы двигателя, соединенным гибким тросом с внешним приводом, причем каналы для подачи красителей имеют переходную часть с переменным диаметром и калиброванные сопла для выпуска красителей.

Технический результат достигается также тем, что в аэродинамической модели самолета длина переходной части составляет не менее 8 диаметров основного канала, а отношение входного диаметра к выходному не менее 2,5.

Технический результат достигается также тем, что в аэродинамической модели самолета длина калиброванного сопла для выпуска красителей составляет менее 2 мм.

Технический результат достигается также тем, что в аэродинамической модели самолета внутренние каналы выращены в процессе создания модели.

Технический результат достигается также тем, что в аэродинамической модели самолета внешний привод размещен за пределами рабочей части трубы.

Технический результат достигается также тем, что в аэродинамической модели самолета части модели соединены между собой полимером, из которого была изготовлена модель.

На фиг.1 изображена модель самолета с дренажной системой.

На фиг.2 представлен привод устройства прокачки жидкости.

На фиг.3 представлена фотография модели самолета с державкой.

Для физического эксперимента по исследованию обтекания новых аэродинамических компоновок используется гидротруба, в которой модель обтекается жидкостью, высокая плотность которой (~10 3 по сравнению с воздухом) обеспечивает полное подобие по числу Re и воспроизведение исследуемых условий обтекания.

Аэродинамическая модель самолета (фиг.1) из фотополимерного материала с дренажной системой выпуска красителей для испытания в гидродинамической трубе состоит из носовой части 1, центральной части фюзеляжа 2 с гондолами двигателей и хвостовым оперением, консолей крыла 3, кронштейна 4 для крепления к державке с приводом прокачивающего узла 5 (фиг.2).

Модель обладает высокой сложностью в сочетании с малыми размерами (фиг.3), поэтому модель (внешнюю и внутреннюю геометрию) изготавливают непосредственно по математическим моделям (без выпуска конструкторской документации) методом быстрого прототипирования.

Полную математическую модель с дренажной системой (фиг.1) разделяют на элементы для обеспечения оптимальной геометрии выращивания на лазерной стереолитографической установке. Составляющие части модели производят из фотополимера, который имеет малую усадку и абсолютно устойчив к воде, например НС300.

Центральная часть фюзеляжа склеивается с консолями крыла и хвостового оперения. Сборка и склейка модели проводится с помощью фотополимера, из которого изготавливается модель. Модель надевается на державку с помощью кронштейна, который вклеивается в центральную часть фюзеляжа. Через державку проходят две трубки для подвода краски, которые соединяются с внутренними каналами. Затем монтируют устройство прокачки воды для имитации работы двигателя и соединяют собранную модель через гибкий трос 6 (фиг.2) с внешним приводом, размещенным за пределами рабочей части трубы.

Каналы подачи красителей 7 (фиг.2) выращиваются непосредственно в материале крыла 3 с выходными отверстиями, диаметр которых позволяет дренировать тонкие элементы модели толщиной порядка 1 мм, с длиной выходного канала, обеспечивающим калибровку потока красителя, и внутренними каналами большего диаметра для подачи красителя к выходным отверстиям. Изогнутый канал для прокладки гибкого троса также выращивается при изготовлении хвостовой части фюзеляжа в процессе лазерной стереолитографии.

Использование данной технологии позволяет значительно сократить время и стоимость производства модели с дренажной системой выпуска многоцветных индикаторных красителей для исследования обтекания в гидротрубе.

Были проведены исследования тестовых моделей для оценки минимально возможных размеров каналов и выходных отверстий высокодренированных агрегатов аэродинамических моделей, разработаны рекомендации для улучшения геометрии каналов с целью повышения их эффективности при испытаниях в гидротрубе.

В процессе проведения эксперимента была проведена отработка геометрии дренажных каналов и выходных сопел, направленная на обеспечение их промывки без механического воздействия и стабилизации выпускаемых из сопел струй индикаторных красителей.

В результате проведенных исследований было предложено использовать геометрию выходных каналов с переменным диаметром, а для стабилизации выпускаемых струй - калиброванные сопла. Соотношение диаметра внешнего канала к диаметру внутреннего, обеспечивающее организацию промывки внутренних каналов от остатков фотополимера, должно быть не менее 2,5, а длина расширяющейся переходной части - не менее 8 диаметров основного канала, при этом длина калиброванных сопел должна быть менее 2 мм.

При такой геометрии канала, в результате уменьшения длины канала с маленьким диаметром, значительно повышается эффективность удаления остатков фотополимерной композиции и при этом геометрия выходных отверстий максимально приближена к кромке оперения. Все это позволяет улучшить качественную картину исследований в гидротрубе. Сборка и склейка модели проводилась с помощью фотополимера, из которого модель была изготовлена. Это позволило обеспечить в месте соединения полную целостность модели, которая проверялась прокачкой жидкости через дренажную систему.

Трудоемкость изготовления модели по традиционной технологии с применением станков с ЧПУ и последующей ручной доводкой аэродинамических поверхностей оценивается от 500-2000 нормочасов в зависимости от размеров модели и сложности конструкции.

Время изготовления данной модели на лазерном стереолитографе ЛС-250 составило 64 часа. Полное время изготовления с постобработкой, сборкой и склейкой составило 5 дней. Трудоемкость изготовления аэродинамической модели самолета по новой технологии составила 120 нормочасов.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Аэродинамическая модель самолета из фотополимерного материала с дренажной системой выпуска красителей и внутренними каналами, состоящая из носовой части фюзеляжа, консолей крыла и центральной части фюзеляжа с гондолами двигателей и хвостовым оперением, кронштейна для крепления модели, отличающаяся тем, что модель изготовлена из фотополимера, устойчивого к воде, и снабжена устройством прокачки жидкости для имитации работы двигателя, соединенным гибким тросом с внешним приводом, причем каналы для подачи красителей имеют переходную часть с переменным диаметром и калиброванные сопла для выпуска красителей.

2. Аэродинамическая модель самолета по п.1, отличающаяся тем, что длина переходной части составляет не менее 8 диаметров основного канала, а отношение входного диаметра к выходному не менее 2,5.

3. Аэродинамическая модель самолета по п.1, отличающаяся тем, что длина калиброванного сопла для выпуска красителей менее 2 мм.

4. Аэродинамическая модель самолета по п.1, отличающаяся тем, что внутренние каналы выращены в процессе создания модели.

5. Аэродинамическая модель самолета по п.1, отличающаяся тем, что внешний привод размещен за пределами рабочей части трубы.

6. Аэродинамическая модель самолета по п.1, отличающаяся тем, что части модели соединены между собой полимером, из которого была изготовлена модель.