Open
Close

Предельный цикл. Предельные циклы Колебания в гликолизе

Мы рассмотрели два типа особых траекторий: особые точки и сепаратрисы. Очень важным видом особой траектории является «предельный цикл». В линейной системе второго порядка описываемой дифференциальным уравнением (1), при имеем замкнутую фазовую траекторию (эллипс), которую мы не можем отнести к предельным циклам, т.к. в этом случае имеем в системе не автоколебания, а границу устойчивости линейной системы. Во всех остальных случаях изолированные, замкнутые фазовые траектории принято называть предельными циклами.

Предельный цикл соответствует устойчивому периодическому режиму – автоколебаниям, если все фазовые траектории «наматываются» на предельный цикл (устойчивый предельный цикл) (Рис. 18).

Если же все фазовые траектории «сматываются» с предельного цикла, как изнутри, так и снаружи, такой предельный цикл неустойчив и соответствует неустойчивым автоколебаниям. (Рис. 19).

Если же соседние траектории «навёртываются» на предельный цикл с одной стороны и «свёртываются» с другой, такой предельный цикл называется полуустойчивым. (Рис. 20).

Итак, при исследовании НСАР особыми траекториями являются «особые точки» (положение равновесия) и предельные циклы (устойчивые периодические колебания). Они и составляют схему фазового портрета.

  1. Метод точечного преобразования

Метод точечных преобразований предложен академиком Андроновым и является дополнением к методу фазовой плоскости. Он служит для анализа возможных режимов в НСАР и их количественной оценки. Пусть изображающая точка в какой-то момент времени находится на верхней полуоси ординат (·Y 1). При движении изображающей точки по фазовой траектории она обходит начало координат и снова возвращается на полуось (·Y 2). (Рис. 21)

При этом «Y 2 » может быть больше, меньше или равно «Y 1 ». Операция нахождения точкиY 2 по заданной точкеY 1 называетсяточечным преобразованием .

Аналитическое взаимно однозначное и непрерывное соответствие точек Y 2 с точкамиY 1 на одной и той же полупрямой (т.е. точечное преобразование) устанавливается с помощью так называемойфункции последования , которая может быть получена из уравнения фазовой траектории

(14)

С помощью этой зависимости можно осуществить точечное преобразование всех точек положительной полуоси ординат, или, другими словами, точечное преобразование положительной полуоси Y, в саму себя.

Графическое изображение
называетсядиаграммой точечного преобразования . По этой диаграмме мы и можем исследовать всевозможные режимы в НСАР, не строя фазового портрета. Точечное преобразование можно осуществлять необязательно для положительной полуоси. В принципе это можно делать для полуосиXи других прямых. Предположим, что имеется диаграмма точечного преобразования. (Рис. 22)

Характер процессов, происходящих в НСАР определяется взаимным расположением диаграммы точечного преобразования [
] и биссектрисы координатного угла, уравнение которойY 2 =Y 1 . Это означает, что после обхода вокруг начала (·)Y 1 возвращается на своё место и, следовательно, в системе имеют место незатухающие колебания (предельный цикл).

Область ниже биссектрисы ОА означает, что после обхода начала координат Y 1

Область выше биссектрисы ОА соответствует Y 2 >Y 1 , и, следовательно, в этой области фазовые траектории представляют раскручивающуюся спираль (расходящиеся колебания).

Рассмотрим характер процессов в САР при любых начальных условиях:

Точечное преобразование точки- точка 1 (Рис. 22). К точке 1 применим ещё раз точечное преобразование, для чего найдём на оси абсцисс значение
. Для этого проведём через точку 1 прямую, параллельную оси абсцисс до пересечения с биссектрисой (точка 2). Точечное преобразование точки 2 – точка 3. Повторяя эти преобразования получаем ступенчатую линию, приводящую нас в точку равновесия А 2 . Точки касания ступенчатой линией биссектрисы ОА определяют последовательность точек пересечения фазовой траекторией полуосиY.

При начальных условиях Y 0 =Y 11 (справа от точки А 2) точечные преобразования опять приводят нас к точке А 2 , следовательно точка А 2 является точкой устойчивого равновесия и соответствует устойчивому предельному циклу.

Аналогичные рассуждения в окрестностях точки А 1 показывают, что точка А 1 является точкой неустойчивого равновесия (неустойчивый предельный цикл).

Итак, устойчивым предельным циклам соответствуют такие точки пересечения диаграммы точечного преобразования с биссектрисой Y 2 =Y 1 , в которых диаграмма точечного преобразования имеет меньший наклон к оси абсцисс, чем биссектриса.

Аналитически это записывается так:
, т.к.биссектрисы = 1. При
имеем неустойчивый предельный цикл. Другими словами, устойчивый предельный цикл получается, если диаграмма точечного преобразования пересекает биссектрисуY 2 =Y 1 сверху вниз, а неустойчивый – если снизу вверх. Таким образом, кривая точечного преобразования позволяет проанализировать возможные режимы поведения НСАР, а именно:

    система устойчива в малом, т.к. при Y 1

    в системе возможен один предельный устойчивый цикл (точка А 2).

Зная координаты точки А 2 , можно рассчитать частоту и амплитуду автоколебаний. При изменении параметров НСАР диаграмма точечного преобразования перемещается относительно биссектрисы угла. При этом поведение НСАР может качественно меняться (Рис. 23).

Кривая 1, как мы видели ранее, соответствует устойчивости в малом и двум предельным циклам: устойчивому (А 2) и неустойчивому (А 1). Кривая 3 соответствует устойчивости в целом (ни одного предельного цикла). Кривая 2 касается биссектрисы и соответствует полуустойчивому предельному циклу. При изменении параметров НСАР мы переходим от кривой 2 к кривой 1 или 3, т.е. кривая 2 является границей между совершенно разными режимами работы НСАР. Значения параметров НСАР, при которых имеет место полуустойчивый предельный цикл, называютсябифуркационными . (Бифуркация (лат.) – разделение, разветвление).

Пусть некоторая динамическая система задана уравнениями Решение данной системы при t → ∞ не всегда задается состоянием равновесия. Так, например, при условии получения мнимых корней соответствующего характеристического уравнения поведение системы характеризуется как незатухающие колебания с постоянной амплитудой, то есть решением являются функции x(t+T)=x(t) , y(t+T)=y(t) . В данном случае говорят, что в системе существует устойчивый предельный цикл . Типичная картина поведения решений в окрестности предельного цикла представлена на рис. 1
Рисунок 1 - Устойчивый предельный цикл Фазовые траектории изнутри и извне «наматываются» на цикл. независимо от исходных данных в системе будут происходить колебания с постоянными амплитудой и частотой - так называемые автоколебания . Типы предельных циклов :

  • Устойчивые - близкие траектории «навиваются» на цикл при t → ∞ (рис. 2);
  • Полустойкие - траектории, находящиеся по одну сторону от цикла - «навиваются» на него при t → ∞ , а те, что находятся по другую сторону - «отходят» от цикла (рис. 3);
  • Неустойчивые - близкие траектории «отходят» от цикла при t → ∞ (рис. 4).

Рис. 2 - Устойчивые циклы. Рис. 3 - Полустойкие. Рис. 4 - Неустойчивые К сожалению, обобщенных эффективных методов определения устойчивости предельных циклов не существует. Один из них основан на использовании функции подражания.

Функция подражания

Идея построения функции подражания состоит в следующем. Проводится луч, что явно пересекает предельный цикл и близкие траектории. Например, проведем луч ОА , исходящего из особой точки О , которая лежит внутри предельного цикла (рис. 5). Введем координату r вдоль этого луча. Рассмотрим траекторию, выходящую из точки А , принадлежащей лучу. Пусть эта траектория впервые пересекает луч в точке В . Введем функцию r B = f(r A) , которая каждой точке с координатой r A ставит в соответствие координату точки В . Пусть r n - координата n -го пересечения траектории с лучом. Тогда r n+1 =f(r n) , а предельном циклу соответствует неподвижная точка этого отображения r* = f(r*) . Если r n → r* для всех r i , принадлежащих окрестности r* , то предельный цикл будет устойчивым. Рисунок 5 - Построение функции подражания Идея построения функции подражания оказалась очень плодотворной для исследования нелинейных систем, особенно высшего порядка (размерность фазового пространства N>2 ). Обобщение описанного подхода носит название метода сечений Пуанкаре . При этом, переходя к системам с большим количеством измерений, вместо луча ОА следует рассматривать некоторую гиперплоскость. Например, в трехмерном случае рассматривают точки Р0, Р1, Р2, ..., Рn как сечения траектории с плоскостью S (рис. 6). Преобразования, что переводят точку в следующую, называется отображением Пуанкаре : Р n + 1 = Т(P n) Рисунок 6 - Схематическое изображение сечения Пуанкаре Метод сечений Пуанкаре упрощает исследования непрерывных динамических систем по крайней мере по трем причинам:
  • Количество фазовых переменных уменьшается на единицу;
  • Дифференциальные уравнения заменяются разностными уравнениями вида x i (k + 1) = f (x i (k)), i = 1,2, ..., N, которые значительно легче поддаются исследованию;
  • Резко сокращается количество данных, подлежащих обработке, так как почти всеми точками на траектории можно пренебречь.
Кроме того, многие системы дифференциальных уравнений порождают схожие отображения. Поэтому сейчас часто одномерные и двумерные отображения рассматриваются как упрощенные модели различных процессов. Ознакомьтесь так же:

Динамич. системы, изображающая периодич. движение. В окрестности П. ц. либо удаляются от него (неустойчивый П. ц.), либо неограниченно приближаются к нему - "наматываются" на него (устойчивый П. ц.). Поведение траекторий в окрестности П. ц. связано со значениями его мультипликаторов (см. Бифуркация ).Если абс. величины всех мультипликаторов меньше 1, то все трдектории неограниченно приближаются к нему и он устойчив. Устойчивый П. ц. является матем. образом периодич. автоколебаний . Напр., ур-ние Ван дер Поля (описывающее, в частности, динамику лампового генератора) имеет при значениях параметра > 0 единственный устойчивый П. ц. (рис. 1).



Рис. 1. Фазовые портреты генератора Ван дер Поля при различных значениях нелинейности: а - квазигармоничные ; 6 - сильно несинусоидальные; в - релаксационные.

Для систем с одной степенью свободы (их фазовое пространство - плоскость) устойчивыми П. ц. и устойчивыми состояними равновесия исчерпываются все возможные объекты, к-рые притягивают соседние траектории на фазовой плоскости. В многомерных динамич. системах с размерностью фазового пространства n 3 возможны более сложные притягивающие объекты - аттракторы.

Рис. 2. Седловой предельный цикл: - устойчивое се-паратрисное многообразие;- неустойчивое сепаратри-сное многообразие.


Если часть мультипликаторов (но не все) по модулю больше 1, то П. ц. седловой (рис. 2) и лежит на пересечении двух сепаратрисных многообразий: устойчивого, по к-рому траектории приближаются к П. ц., и неустойчивого, состоящего из удаляющихся от П. ц. траекторий. Устойчивые многообразия П. ц. могут разделять в фазовом пространстве области притяжения разл. аттракторов - как простых (состояние равновесия, устойчивый П. ц.), так и странных. Неустойчивые многообразия седловых П. ц. могут входить в состав странных аттракторов и стохастич. множеств гамиль-тоновых систем и определять их структуру. Если все мультипликаторы по модулю больше 1, то П. ц. неустойчив (устойчив при обращении направления движения по траектории, т. е. при).

Предельный цикл есть изолированная замкнутая кривая на фазовой плоскости, к которой в пределе при t ® ¥ стремятся все интегральные кривые. Предельный цикл представляет стационарный режим с определенной амплитудой, не зависящий от начальных условий, а определяющийся только организацией системы. Существование предельного цикла на фазовой плоскости есть основной признак автоколебательной системы. Очевидно, что при автоколебательном процессе фаза колебаний может быть любой.

Остановимся на общих характеристиках автоколебательных систем. Рассмотрим систему уравнений общего вида:

Если T (T > 0) - наименьшее число, для которого при всяком t

то изменение переменных x = x(t), y = y(t) называется периодическим изменением с периодом T.

Периодическому изменению соответствует замкнутая траектория на фазовой плоскости, и обратно: всякой замкнутой траектории соответствует бесконечное множество периодических изменений, отличающихся друг от друга выбором начала отсчета времени.

Если периодическому изменению на фазовой плоскости соответствуетизолированная замкнутая кривая, к которой с внешней и внутренней стороны приближаются (при возрастании t ) соседние траектории по спиралям, эта изолированная замкнутая траектория есть предельный цикл .

Простые примеры позволяют убедиться, что система общего вида (8.1) допускает в качестве траекторий предельные циклы.

Например, для системы

(8.2)

траектория является предельным циклом. Его параметрические уравнения будут:

а уравнения всех других фазовых траекторий запишутся в виде:

.

Значениям постоянной интегрирования С > 0 соответствуют фазовые траектории, накручивающиеся на предельный цикл изнутри (при t ®¥), а значениям –1< C <0 траектории, накручивающиеся снаружи.

Предельный цикл называетсяустойчивым, если существует такая область на фазовой плоскости, содержащая этот предельныйцикл, - окрестность e, что все фазовые траектории, начинающиеся в окрестности e, асимптотически при t ® ¥ приближаются кпредельному циклу.

Если же, наоборот, в любой сколь угодно малой окрестности e предельного цикла существует по крайней мере одна фазовая траектория, не приближающаяся к предельному циклупри t ® ¥, то такой предельный цикл называется неустойчивым. Такие циклы разделяют области влияния (бассейны) разных притягивающих множеств.

На рис. 8.2 изображены устойчивый предельный цикл (а ) и неустойчивые (б ) и (в ).

Неустойчивые предельные циклы, подобные изображенному на рис. 8.2 б , такие, что все траектории с одной стороны (например, изнутри) приближаются к ним, а с другой стороны (например, извне) удаляются от них при t ® ¥, называют «полуустойчивыми» или двойными. Последнее название связано с тем, что обычно такие циклы при подходящем изменении параметра системы расщепляются на два, один из которых устойчив, а другой неустойчив.



А.М. Ляпунов показал, что для исследования устойчивости периодического движения x = j(t ), y = y(t ) можно идти по пути линеаризации уравнений, подобно тому, как мы это делали при исследовании устойчивости состояний равновесия. Если положить

подставить эти выражения в уравнения (8.1), разложить правые части этих уравнений - функции

в ряды по степеням x и h и отбросить нелинейные члены, то мы получим линейные уравнения (уравнения первого приближения) для координат возмущения x и h:

Коэффициенты в правой части:

Это система линейных дифференциальных уравнений с периодическими коэффициентами периода T , поскольку a , b , c , d суть функции от j, y - периодических функций времени с периодом T . Общий вид ее решения

Здесь - некоторые периодические функции с периодом T . От показателей и которые носят название «характеристических показателей», зависят свойства решений для отклонений от стационарного периодического решения x и h. А именно, знаки их действительных частей определяют, являются ли эти решения нарастающими или затухающими. Можно показать, что в силу автономности исходной системы (8.1) один из характеристических показателей равен нулю, а другой равен h .

где x = j(t ), y = y(t ) - любое периодическое решение, соответствующее рассматриваемому предельному циклу, T - период решения.

Таким образом, устойчивость предельного цикла (и устойчивость в смысле Ляпунова соответствующих периодических движений) определяется знаком характеристического показателя. Предельный цикл устойчив, если h < 0 и неустойчив, если h > 0. Если же h = 0, уравнения первого приближения не решают вопроса об устойчивости периодического движения.

Для нахождения предельных циклов не существует таких простых аналитических методов, как для нахождения стационарных точек и исследования их устойчивости. Однако, исследование фазовой плоскости системы позволяет ответить на вопрос, есть в данной системе предельный цикл, или нет.

Сформулируем несколько теорем, определяющих наличие предельного цикла по топологическому строению фазовой плоскости. Они могут быть полезны как при аналитическом, так и при компьютерном анализе системы.

Теорема 1. Пусть на фазовой плоскости существует область, из которой фазовые траектории не выходят, и в которой нет положений равновесия (особых точек). Тогда в этой области обязательно существует предельный цикл, причем все остальные траектории обязательно наматываются на него.

На рис. 8.3. изображена такая область G , из которой фазовые траектории не выходят. Это означает, что фазовые траектории либо входят, пересекая границу, внутрь области, либо сама граница является траекторией. Легко видеть, что такая область не может быть односвязной. Поскольку траектория наматывается на предельный цикл изнутри, это означает, что внутри этого предельного цикла на фазовой плоскости существует либо неустойчивая особая точка, либо неустойчивый предельный цикл, очевидно, не принадлежащие рассматриваемой области G .

Таким образом, если найти на фазовой плоскости такую двусвязную область, что направления фазовых траекторий на всей границе обращены внутрь этой области, то можно утверждать, что внутри этой области имеется предельный цикл.

Теорема 2. Если существует на фазовой плоскости некоторая замкнутая область, такая, что все фазовые траектории, пересекающие границу этой области, входят в нее, и внутри этой области находится неустойчивая особая точка, то в этой области обязательно имеется хотя бы один предельный цикл (рис. 8.4)

Приведем также некоторые критерии отсутствия замкнутых фазовых траекторий (в том числе предельных циклов).

1. Если в системе не существует особых точек, то в ней не может быть и замкнутых фазовых траекторий.

2. Если в системе существует только одна особая точка, отличная от узла, фокуса и центра (например, седло), то такая система не допускает замкнутых фазовых траекторий.

3. Если в системе имеются только простые особые точки, причем через все точки типа узел и фокус проходят интегральные кривые, уходящие на бесконечность, то в такой системе нет замкнутых фазовых траекторий.

В случае, если критерии 1–3 выполнены, можно с уверенностью утверждать, что в системе нет предельных циклов. Однако невыполнение этих критериев еще не позволяет сделать вывод о наличии в системе предельных циклов и, следовательно, автоколебаний.

Неустойчивый предельный цикл также может содержаться в фазовом портрете грубых систем. Однако такой предельный цикл не соответствует реальному периодическому процессу, он играет лишь роль «водораздела», по обе стороны которого траектории имеют различное поведение. Например, на рис. 8.5 представляет собой сепаратрису, отделяющую область тяготения траекторий к устойчивой особой точке, с одной стороны, и к устойчивому предельному циклу, с другой.

После рассмотрения состояний равновесия перейдем к периодическим движениям, которые, как мы знаем, могут встречаться в системах, описываемых уравнениями

Если наименьшее число, для которого при всяком

то движение называется периодическим движением с периодом Как мы знаем, периодическому движению соответствует замкнутая фазовая траектория на фазовой плоскости х, у, и обратно: всякой замкнутой траектории соответствует бесчисленное множество периодических движений, отличающихся друг от друга выбором начала отсчета времени. Замкнутые фазовые траектории мы уже встречали при рассмотрении консервативных систем, где они всегда образовывали целые континуумы траекторий, вложенных одна в другую (например, траектории вокруг особой точки типа центра). В рассмотренных нами примерах автоколебательных систем (генератор с -характеристикой, часы; см. гл. III, §§ 3-5) периодическому движению на фазовой плоскости соответствовала изолированная замкнутая кривая, к которой с внешней и внутренней сторон приближались (при возрастании соседние траектории по спиралям. Такие изолированные замкнутые траектории носят название предельных циклов. Простые примеры позволяют убедиться, что и системы вида (5.1) с аналитическими правыми частями, вообще говоря, допускают в качестве траекторий предельные циклы.

Мы будем называть предельный цикл устойчивым, если существует такая область на фазовой плоскости, содержащая этот предельный цикл, - окрестность что все фазовые траектории, начинающиеся в окрестности асимптотически при приближаются к предельному циклу.

Если же, наоборот, в любэй сколь угодно малой окрестности предельного цикла существует хотя бы одна фазовая траектория, не приближающаяся к предельному циклу при то такой предельный цикл будем называть неустойчивым. Для иллюстрации сказанного на рис. 240 изображен устойчивый предельный цикл, а на рис. 241 и 242 - неустойчивые предельные циклы. Заметим, что неустойчивые циклы, подобные изображенному на рис. 242, такие, что все траектории с одной стороны (например, извне) приближаются к ним, а с другой стороны (например, изнутри) удаляются от них при иногда называют «полуустойчи-выми» или двойными (последнее название обусловлено тем, что обычно такие циклы при подходящем изменении параметра системы расщепляются на два, один из которых устойчив, а другой неустойчив).

Наряду с устойчивостью предельного цикла как траектории, определение которой было только что дано (ее часто называют орбитной устойчивостью), можно говорить об устойчивости в смысле

Ляпунова периодического движения, соответствующего предельному циклу. Именно, периодическое движение периодом так что называется устойчивым в смысле Ляпунова, если для каждого заданного положительного можно подыскать такое положительное 8, что для любого другого движения удовлетворяющего условиям

выполняются неравенства:

при любых Ниже мы будем пользоваться главным образом понятием орбитной устойчивости предельного цикла.

Устойчивость предельного цикла (равно как и устойчивость в смысле Ляпунова соответствующих периодических движений) определяется знаком его «характеристического показателям

где любое периодическое решение, соответствующее рассматриваемому предельному циклу, и период решения. Именно, предельный цикл устойчив при и неустойчив при (значению соответствуют как устойчивые, так и неустойчивые предельные циклы).

Для исследования устойчивости периодического движения в смысле Ляпунова можно, как показал Ляпунов, идти по пути линеаризации уравнений, подобно тому, как мы это делали при исследовании устойчивости состояний равновесия. Если положить подставить эти выражения в уравнения (5.1), разложить правые части этих уравнений - функции в ряды по степеням и отбросить нелинейные члены, то мы получим линейные уравнения («уравнения первого приближения») для координат «возмущения» и :

Это - система линейных дифференциальных уравнений с периодическими коэффициентами периода (ибо суть функции от периодических функций времени с периодом Общий вид ее решения таков:

где - некоторые периодические функции (с периодом От показателей которые носят название «характеристических показателей», зависит характер решений для и именно, знаки их действительных частей определяют, являются ли эти решения нарастающими или затухающими.

В рассматриваемой задаче (в силу автономности исходной системы уравнений (5.1)) один из характеристических показателей равен нулю, а другой равен Знак этого показателя определяет, устойчиво ли движение , именно: периодическое движение устойчиво в смысле Ляпунова (правда, не абсолютно, так как возмущения по фазе не затухают), если и неустойчиво, если если же то уравнения первого приближения не решают вопроса об устойчивости периодического движения.

Прежде чем переходить к доказательству сформулированного условия устойчивости предельного цикла, мы остановимся, забегая по некоторым пунктам немного вперед, на принципиальном вопросе о физической интерпретации изолированных замкнутых траекторий - предельных циклов.

Если мы потребуем, чтобы в реальных физических системах качественный характер возможных движений сохранялся при произвольных малых изменениях самих систем (на языке математики - при произвольных малых изменениях правых частей системы (5.1)), то, как это мы увидим в дальнейшем, мы этим запретим существование неизолированных замкнутых кривых. В системах, удовлетворяющих этому требованию устойчивости качественного характера движений при малых изменениях динамической системы, - в так называемых «грубых» системах, - могут быть только изолированные замкнутые траектории (только предельные циклы) и притом обязательно с характеристическим показателем, отличным от нуля (поэтому орбитная устойчивость предельного цикла влечет за собой устойчивость по Ляпунову всех соответствующих ему периодических движений).

С физической точки зрения представляет интерес следующее замечание, которое можно сделать относительно движений, отображаемых устойчивым предельным циклом. Именно, можно сказать, что для таких движений период и «амплитуда» не зависят от начальных условий в том смысле, что все соседние движения (соответствующие целой области начальных значений - так называемой области устойчивости в большом) асимптотически приближаются к периодическому движению по предельному циклу, которое имеет определенный период и определенную «амплитуду».

Вышеприведенные свойства периодических движений, отображаемых предельными циклами с отрицательными характеристическими показателями: а) устойчивость по отношению к малым изменениям самой системы; б) независимость (в указанном смысле) периода и «амплитуды» от начальных условий - составляют характерную черту реальных автоколебательных процессов.

Конкретное исследование уравнений вида (5.1), с которыми пришлось иметь дело в различных случаях автоколебаний, также показало на ряде примеров, что если уравнения (5.1) с достаточной точностью отображают законы движения реальной автоколебательной

системы, то они обязательно имеют предельные циклы с отрицательным характеристическим показателем, и что стационарные периодичёские процессы действительно отображаются этими предельными циклами.

Отсюда мы делаем такой вывод: реальные автоколебательные процессы, устанавливающиеся в системах, достаточно точно отображаемых уравнениями (5.1), математически соответствуют предельным циклам с отрицательным характеристическим показателем. Наличие таких предельных циклов в фазовом портрете рассматриваемой динамической системы является необходимым и достаточным условием для возможности (при надлежащих начальных условиях) существования автоколебаний в системе, т. е. для того, чтобы, система была автоколебательной .

Неустойчивый предельный цикл, имеющий положительный характеристический показатель, само собой разумеется, также может содержаться в фазовом портрете «грубых» систем. Однако такой предельный цикл не соответствует реальному периодическому процессу; он играет лишь роль «водораздела», по обе стороны от которого траектории имеют различное поведение. Ясно, что это обстоятельство также имеет существенный физический интерес. Например, наличие неустойчивого цикла дает объяснение так называемого «жесткого» режима, при котором малые начальные отклонения в системе затухают, а большие, наоборот, нарастают.